
Decoupling the Ascending and Descending
Phases in Abstract Interpretation

Vincenzo Arceri[0000−0002−5150−0393]1 and Isabella
Mastroeni[0000−0003−1213−536X]2 and Enea Zaffanella[0000−0001−6388−2053]1

1 University of Parma, Italy
{vincenzo.arceri,enea.zaffanella}@unipr.it

2 University of Verona, Italy
isabella.mastroeni@univr.it

Abstract. Abstract Interpretation approximates the semantics of a pro-
gram by mimicking its concrete fixpoint computation on an abstract do-
main A. The abstract (post-) fixpoint computation is classically divided
into two phases: the ascending phase, using widenings as extrapolation
operators to enforce termination, is followed by a descending phase, using
narrowings as interpolation operators, so as to mitigate the effect of the
precision losses introduced by widenings. In this paper we propose a sim-
ple variation of this classical approach where, to more effectively recover
precision, we decouple the two phases: in particular, before starting the
descending phase, we replace the domain A with a more precise abstract
domain D. The correctness of the approach is justified by casting it as an
instance of the A2I framework. After demonstrating the new technique
on a simple example, we summarize the results of a preliminary experi-
mental evaluation, showing that it is able to obtain significant precision
improvements for several choices of the domains A and D.

Keywords: Abstract Interpretation, Static Analysis, Widening, Narrowing

1 Introduction

Abstract interpretation [17] is a framework for designing approximate semantics,
with the aim of gathering information about programs in order to provide con-
servative/sound answers to questions about their run-time behaviors. In other
words, the purpose of abstract interpretation is to formally design automatic
program analyses by approximating program semantics for statically determin-
ing dynamic properties. The design of static analyzers consists in automatizing
the computation of such approximations, and in this case the answer can only
be partial or imprecise, due to the undecidability of program termination. Ab-
stract/approximated semantics are computed by mimicking the monotonic (as-
cending) concrete semantics computation, obtained by Kleene iteration reaching
fixpoint. Unfortunately, it is well known that Kleene fixpoint computation may
not terminate. In the static analysis framework this issue has been tackled by

introducing fixpoint accelerators, namely new operators (called widenings) built
on the computational abstract domain, allowing to accelerate the fixpoint com-
putation at the price of potentially reaching a post-fixpoint, namely at the price
of losing precision in the answer. For this reason, it is common in static analysis
to design another operator (called narrowing) performing a descending path in
order to try to recover some precision by refining the reached post-fixpoint.

The precision of the result depends both on the ability of the widening oper-
ator to guess a limit of the increasing sequence, and on the information gathered
during the decreasing phase. Intuitively, the increasing sequence extrapolates the
behavior of the program from the first steps of its execution, while the decreasing
sequence gathers information about the end of the execution of the program [13].
Moreover, a naive application of the classical approach may lead to an inade-
quate analysis, which is too expensive or too imprecise, meaning that there is
a strong need for mechanisms that can effectively tune the precision/efficiency
tradeoff. In order to improve this ratio, we could either improve efficiency (usu-
ally to the detriment of precision) by choosing a simpler (less precise) domain
or by changing the fixpoint construction (e.g., replacing precise abstract oper-
ators with cheaper over-approximations), or improve precision (usually to the
detriment of efficiency) by choosing a more precise/costly domain or again by
changing the fixpoint construction (clearly in the opposite direction, see tech-
niques discussed in Section 5).

In this work, we propose to combine these improvement approaches by choos-
ing to use different domains (with different precision degrees) depending on the
analysis phase: we use a potentially less precise domain in the fixpoint computa-
tion exploiting a widening operator for reaching a post-fixpoint in the ascending
phase, and therefore potentially sensitively losing precision, and we use a more
precise domain in the descending (narrowing) phase for trying to improve the
gain of precision of such phase. The idea is rather simple but, to the best of our
knowledge, it was never proposed before; also, since it is orthogonal with respect
to similar approaches, it can be used in combination with them (rather than as
an alternative to them). The intuition beyond the gain of precision without a
relevant loss of efficiency is based on the idea that in the descending phase we do
not need to use the more expensive operations. Such intuition is supported by
our initial experimental evaluation, showing that the proposed approach is surely
promising, being able to improve precision in a significant number of cases.

Paper structure. Section 2 gives basics in order theory, Abstract Interpretation,
and the classical approach for static analysis by Abstract Interpretation. Sec-
tion 3 presents our proposal for decoupling the ascending and descending phases
with two different abstract domains. Section 4 reports a preliminary experimen-
tal evaluation of our approach. Section 5 discusses most related works. Section 6
concludes.

2 Background

Order theory. We denote by ℘(S) the powerset of a set S. A poset 〈L,vL〉 is a
set L equipped with a partial order vL ∈ ℘(L × L), i.e., a reflexive, transitive
and anti-symmetric binary relation; in the following we will omit subscripts when
clear from context. A poset is a join semi-lattice if, for each l1, l2 ∈ L, the lub
(least upper bound) l1 t l2 belongs to L; similarly, it is a meet semi-lattice if the
glb (greatest lower bound) l1 u l2 belongs to L; when both properties hold, we
have a lattice 〈L,v,t,u〉. A lattice is complete if ∀X ⊆ L,

⊔
X and

d
X belong

to L; a complete lattice with bottom element ⊥ and top element > is denoted
〈L,v,t,u,⊥,>〉. A poset 〈L,v〉 satisfies the ascending chain condition (ACC)
iff each infinite sequence l0 v l1 v · · · v li v . . . of elements of L is not strictly
increasing, i.e., ∃k ≥ 0,∀j ≥ k : lk = lj . Dually the poset satisfies the descending
chain condition (DCC) iff each infinite sequence l0 w l1 w · · · w li w . . . of
elements of L is not strictly decreasing, that is ∃k ≥ 0,∀j ≥ k : lk = lj .

A function f : L→ L on poset 〈L,v〉 is monotone if, for all l1, l2 ∈ L, l1 v l2
implies f(l1) v f(l2). We denote post(f) the set of post-fixpoints of f , i.e., those
elements x ∈ L satisfying f(x) w x; similarly, pre(f) is the set of pre-fixpoints
of f , satisfying f(x) v x; the set of fixpoints of f , satisfying f(x) = x, is thus
fix(f) = pre(f) ∩ post(f). Given a function f : L → L we recursively define the
iterates/iterations of f from x ∈ L as f0(x) = x and f i+1(x) = f(f i(x)). The
Kleene fixpoint theorem says that a continuous function f : L→ L on a complete
lattice 〈L,v,t,u,⊥,>〉 has a least fixpoint lfp(f) ∈ L, which can be obtained
as the lub of the increasing sequence f0(⊥) v f1(⊥) v · · · v f i(⊥) v . . . [18].

Abstract Interpretation (AI). Abstract Interpretation [17, 18] is a theory to
soundly approximate program semantics, focusing on some run-time property
of interest. In the classical setting, the concrete and the abstract semantics are
defined over two complete lattices, respectively called the concrete domain C and
the abstract domain A. A pair of monotone functions α : C → A and γ : A→ C
forms a Galois Connection (GC) if ∀c ∈ C, ∀a ∈ A : α(c) vA a ⇔ c vC γ(a).
If C and A are related by a GC, denoted C −−−→←−−−α

γ
A, then an abstract function

fA : A→ A is a correct approximation of a concrete function fC : C → C if and
only if ∀c ∈ C : α(fC(c)) vA fA(α(c)) or equivalently ∀a ∈ A : fC(γ(a)) vC
γ(fA(a)); the best correct approximation of fC is f]A = (α ◦ fC ◦ γ).

Static program analysis via abstract interpretation. It is possible to represent a
program of interest as a control-flow graph (CFG for short). A CFG is a graph
〈N,E〉 such that N = {n1, n2, . . . , nm} is a finite set of nodes corresponding to
the control points of the program, and E ⊆ N ×N is a finite set of edges. It is
possible to compute the CFG associated with a certain program with standard
techniques [37].

Let us denote by A the abstract domain approximating the concrete do-
main C, used to analyze programs of interest. With each node n ∈ N is associ-
ated a function transformer fn : Am → A capturing the effects of the node

int main () {
int x = 0;
while (x < 100)
if (x < 50)

x = x + 2;
else

x = x + 10;
}

(a)

!"# $ = %

$ < &%%

$ = $ + ' $ = $ + &%

($!#

$ <)%

x1

x2

x3

x4 x5

x6
*+,-(

#./(

*+,-(#./(

(b)

x1 = > x3 = x2 x4 = x3 x5 = x3 x6 = x2

x2 = Even t (x4 +Par Even) t (x5 +Par Even)

(c)

Fig. 1: (a) C function example, (b) associated CFG, (c) associated system of
equations with the Par abstract domain.

n, i.e., the abstract semantics. Analyzing a given CFG C = 〈N,E〉, where
N = {n1, n2, . . . , nm} means to resolve the following system of equations3

F =
{
xi = fi(x1, x2, . . . , xm)

∣∣ i = 1, 2, . . . ,m
}

The goal of AI-based static analysis, using an abstract domain A, is to compute
the least solution of the equation set F as the limit of a Kleene iteration on A,
i.e., xlfp(F)

/

= (xlfp(F)
1 , . . . , x

lfp(F)
m) starting from the bottom elements of A, i.e.,

∀i ∈ [1,m]. xi = ⊥.

Example 1. Consider the C function of Figure 1a and the corresponding CFG,
shown in Figure 1b. We intuitively describe the analysis of this program using
the abstract domain Par [18, Example 10.1.0.3], tracking the parity of numerical
variables:

Par =
〈
{⊥,>,Even,Odd},v,t,u,⊥,>

〉
,

where the partial order is defined by ⊥ v x v >, for each x ∈ Par. The system
of equations is reported in Figure 1c; Note that the equation defining xi is
intuitively describing the values that are possibly entering the corresponding
node of the CFG (also labeled xi for convenience); for instance, the right hand
side of the equation defining x2 computes the lub of the abstract values exiting
from nodes x1, x4 and x5, respectively. For space reasons, we leave to intuition
3 In general, the least fixpoint on the concrete domain C is not finitely computable.
Hence, the idea is to compute an abstract fixpoint, over an abstract domain A, that
correctly approximates the concrete one.

the abstract functions modeling the semantics of each CFG node (e.g., function
+Par : Par×Par→ Par modeling addition on the Par domain). The least solution
for the system is x1 = > and xi = Even for i = 2, . . . , 6. ut

The ascending sequence over the system of equations F may fail to (finitely)
converge for abstract domains that do not satisfy the ACC. A converge guarantee
can be provided by widening operators, which over-approximate the least fix-
point solution xlfp(F) by effectively computing a post-fixpoint of F . A widening
∇ : A×A→ A is an operator such that:

– for each a1, a2 ∈ A, a1 v a1 ∇ a2 and a2 v a1 ∇ a2;
– for all ascending sequences a0 v · · · v ai+1 v . . . , the ascending sequence
x0 v · · · v xi+1 v . . . defined by x0 = a0 and xi+1 = xi ∇ ai+1 is not
strictly increasing.

In principle, widening can be applied to all equations of the system F , which
however would lead to a gross over-approximation; following [12], it is sufficient
that the widening is applied on one node in each cycle of the CFG; for instance,
in Figure 1b we can use x3 as the one and only widening point. We denote
WP ⊆ N the set of widening points, i.e., the nodes of the CFG where widening
is applied, leading to the system of equations F∇:{

xi = xi ∇ fi(x1, x2, . . . , xm), if i ∈WP;
xi = xi t fi(x1, x2, . . . , xm), otherwise.

(1)

In order to mitigate the loss of precision introduced by widenings, the as-
cending phase computing the post-fixpoint x∇ of F can be followed by another
Kleene iteration on the system F , starting from x∇ and descending towards
a fixpoint of F (not necessarily the least one). If the abstract domain A does
not satisfy the DCC, this descending sequence may fail to converge; a conver-
gence guarantee can be obtained by using a narrowing operator ∆: A×A→ A,
satisfying:

– for each a1, a2 ∈ A, a1 w a1 ∆ a2 w a1 u a2;
– for all descending sequences a0 w · · · w ai+1 w . . . , the descending sequence
x0 w · · · w xi+1 w . . . defined by x0 = a0 and xi+1 = xi ∆ ai+1 is not
strictly decreasing.

As before, the application of narrowings can be limited to WP, leading to the
system of equations F∆ used during the descending phase:{

xi = xi ∆ fi(x1, x2, . . . , xm), if i ∈WP;
xi = xi u fi(x1, x2, . . . , xm), otherwise.

(2)

In general, the descending sequence with narrowing will compute a post-fixpoint
x∆ of F (not necessarily a fixpoint), satisfying x∆ v x∇. A graphical represen-
tation of the ascending and descending phases over the abstract domain A is

⊤

⊥

post(F)
x∇A

pre(F)

fix(F)
F∇

FΔ

xΔ

Fig. 2: The ascending and descending phases over abstract domain A.

reported in Figure 2. Note that a “glb-based” narrowing operator can be eas-
ily defined by computing the domain glb and forcing the descending sequence
to stop as soon as reaching a fixed, finite number k ∈ N of iterations. For this
reason, several abstract domains do not implement a proper narrowing operator.

Example 2. The domain of integral intervals [22] (or 1-dimension integral boxes)
is an example of complete lattice satisfying neither the ACC nor the DCC:

Itv = {⊥,>} ∪
{

[`, u]
∣∣ `, u ∈ Z, ` ≤ u

}
∪
{

[−∞, u]
∣∣ u ∈ Z

}
∪
{

[`,+∞]
∣∣ ` ∈ Z

}
,

where ⊥ is the bottom element (denoting the empty interval), > = [−∞,+∞]
is the top element (denoting Z) and the partial order, lub and glb operators
consistently model the usual containment relation. The interval widening oper-
ator [22] ∇ : Itv × Itv → Itv is defined, for each x ∈ Itv, by ⊥ ∇ x = x ∇ ⊥ = x
and

[`0, u0] ∇ [`1, u1] = [(`1 < `0 ?−∞ : `0), (u0 < u1 ? +∞ :u0)].

Similarly, the interval narrowing operator [22] ∆: Itv × Itv → Itv is defined, for
each x ∈ Itv, by ⊥ ∆ x = x ∆ ⊥ = ⊥ and

[`0, u0] ∆ [`1, u1] = [(`0 = −∞ ? `1 : `0), (u0 = +∞ ?u1 :u0)].

Considering again the C function in Figure 1a, the corresponding system of
equations for the domain Itv is shown in Figure 3a (where +Itv : Itv × Itv → Itv
models addition on the Itv domain). The computation of the ascending and

x1 = > x4 = x3 u [−∞, 49]
x2 = [0, 0] t (x4 +Itv [2, 2]) t (x5 +Itv [10, 10]) x5 = x3 u [50,+∞]
x3 = x2 u [−∞, 99] x6 = x2 u [100,+∞]

(a)
ascending phase iter descending phase iter

N WP 1st 2nd (= x∇
Itv) 1st 2nd (= x∆

Itv)
x1 > > > >
x2 [0, 0] [0,+∞] [0,+∞] [0, 109]
x3 X [0, 0] [0,+∞] [0, 99] [0, 99]
x4 [0, 0] [0, 49] [0, 49] [0, 49]
x5 ⊥ [50,+∞] [50, 99] [50, 99]
x6 ⊥ [100,+∞] [100,+∞] [100, 109]

(b)

Fig. 3: (a) Equations for CFG in Figure 1b using Itv, (b) interval results.

descending sequences is shown in Figure 3b, where in the 2nd column we have
highlighted the only widening point x3; in particular, the 4th and 6th columns
show the post-fixpoint and the fixpoint obtained at the end of the ascending and
the descending phases, respectively. ut

Powerset domains. Many abstract domains (e.g., numerical domains whose ele-
ments are convex sets) are unable to precisely describe disjunctive information,
thereby incurring significant precision losses whenever the abstract semantic con-
struction needs to merge different control flow paths. To avoid these losses, it is
possible to lift the domain using a disjunctive domain refinement operator [18].
In the following we will consider the finite powerset [6] of an abstract domain A,
which is the join-semilattice Setfn(A) = 〈℘fn(A),vfn,tfn,⊥fn〉, where:

– the carrier ℘fn(A) is the set of the finite and non-redundant subsets of A (an
element a1 ∈ A is redundant in S ⊆ A iff a1 = ⊥A or ∃a2 ∈ S . a1 @A a2);

– the partial order S1 vfn S2 is defined by ∀a1 ∈ S1,∃a2 ∈ S2 . a1 vA a2;
– the (binary) least upper bound S1 tfn S2 is computed by removing the re-

dundant elements from the set union S1 ∪ S2;
– the bottom element is ⊥fn = ∅.

For space reasons we omit a more thorough discussion of powerset domains
(e.g., the lifting of the abstract semantic operators defined on A), referring the
interested reader to [6, 18].

3 Decoupling the Ascending and Descending Phases

In the previous section we have recalled the classical approach used in static
analysis based on abstract interpretation, which can be summarized as follows:

⊤"

⊥"

x∇"

"

fix(F")
F∇"

⊤%

⊥%

γ"↑↓%(x∇")
%

fix(F%)

FΔ%

xΔ%

FΔ" xΔ"

post(F") post(F%)

pre(F") pre(F%)

Fig. 4: The ascending and descending phases over A and D, respectively.

(a) fix an abstract domain A such that C −−−→←−−−α
γ

A and a corresponding, correct
system of abstract equations FA; (b) approximate the concrete semantics by
computing a post-fixpoint of FA in the ascending phase (with widening); (c)
improve the result in the descending phase (with narrowing). What is worth
noting is that the two phases (b) and (c) are computed on the same domain A.

Moving from the observation that the only goal of the descending phase is to
improve precision, we propose to decouple it from the ascending phase: that is, we
compute the descending sequence on a different, more precise abstract domain,
so as to increase the chances of a significant precision improvement. Clearly, the
adoption of a more precise domain likely incurs some penalty in terms of the
efficiency of the analysis; however, since in our proposal this domain is only used
in the descending phase, it should be simpler to achieve a good tradeoff between
precision and efficiency, because the descending phase can be stopped after any
number of iterations and still provide a correct result.

In the following we will denote A and D the abstract domains used in the
ascending and descending phases, respectively, and use the notation A↑↓D to
refer to this decoupled approach. The correctness/precision relation between
the concrete domain and the two abstract domains is formalized by requiring
C −−−−→←−−−−

αD

γD
D −−−−−→←−−−−−

αA↑↓D

γA↑↓D

A; we also require that the concretization function γA↑↓D is
effectively computable.

Our decoupled approach is graphically represented in Figure 4. The (con-
crete) system of equations FC is correctly approximated on domain D by the

(abstract) system of equations FD, which is further approximated on domain A
by the system of equations FA. We first compute a post-fixpoint x∇A ∈ A using
the system of equations F∇A (with widening); instead of descending on the same
abstract domain, as done in Section 2, we transfer the post-fixpoint x∇A to the
more precise domain D, using the concretization function γA↑↓D (which is com-
putable); hence, the descending phase will use the system of equations F∆

D (with
narrowing) on domain D, starting from γA↑↓D(x∇A) and obtaining an improved
post-fixpoint x∆

D ∈ D.
The next lemma states that the post-fixpoint x∇A ∈ A corresponds to a post-

fixpoint for FD, necessary for starting the descending phase on D.

Lemma 1. Consider D −−−−−→←−−−−−
αA↑↓D

γA↑↓D

A and let FA : A → A be a correct approxima-
tion of FD : D→ D. Then,

x∇A ∈ post(FA) =⇒ γA↑↓D(x∇A) ∈ post(FD).

It would be desirable to prove that the final result x∆
D obtained when using

the decoupled approach A↑↓D systematically improves on the final result x∆
A

obtained by the classical approach, i.e., x∆
D vD γA↑↓D(x∆

A). However, in general
this property does not hold, due to the use of different, unrelated, possibly non-
monotonic narrowing operators on the domains A and D. We can prove the
desired result provided we force both domains to use the glb-based narrowing
(with the same threshold value).

Proposition 1. Consider D −−−−−→←−−−−−
αA↑↓D

γA↑↓D

A and let FA : A→ A be a correct approx-
imation of FD : D→ D; let also x∇A ∈ post(FA). Then, for each k ∈ N,

F kD(γA↑↓D(x∇A)) vD γA↑↓D(F kA (x∇A)).

Note that Lemma 1 and Proposition 1 are well-known results. Intuitively,
the correctness of the decoupled approach is easily justified by viewing it as
an instance of the A2I framework [20]: starting from a classical analysis using
the more precise domain D, we further abstract part of its computation (the
ascending phase), approximating it on domain A.

On the Galois Connection requirement. When formalizing our decoupled pro-
posal, we have assumed that all the considered domains (concrete, ascending and
descending) are related by GCs: this corresponds to an ideal situation where for
each element x of the more precise domain (resp., each semantic transformer f)
we can identify the corresponding best correct approximation on the less precise
domain α(x) (resp., α ◦ f ◦ γ). However, there are well-known abstract domains
(e.g., the domain convex polyhedra [21] approximating sets of reals or the de-
terministic finite-state automata domain [4] approximating sets of strings) that
cannot be related to the concrete domain using a GC. This is not a real concern
because, as discussed at length in [19], one can adopt a slightly weaker theoret-
ical framework and still ensure the correctness of the analysis. As a matter of
fact, in the experimental evaluation we will implicitly relax the GC assumption.

transfer descending phase
N γItv↑↓ISet(x∇

Itv) 1st iter 2nd iter
x1 {>Itv} {>Itv} {>Itv}
x2 {[0,+∞]} {[0, 0], [2, 51], [60,+∞]} {[0, 0], [2, 2], [4, 51], [60, 61], [70, 109]} X
x3 {[0,+∞]} {[0, 0], [2, 51], [60, 99]} {[0, 0], [2, 2], [4, 51], [60, 61], [70, 99]} X
x4 {[0, 49]} {[0, 0], [2, 49]} {[0, 0], [2, 2], [4, 49]} X
x5 {[50, 99]} {[50, 51], [60, 99]} {[50, 51], [60, 61], [70, 99]} X
x6 {[100,+∞]} {[100,+∞]} {[100, 109]}

Fig. 5: Computing the descending phase on Itv↑↓ISet.

Example 3. We now reconsider the C program in Figure 1a and show how the
decoupled approach can be used to improve on the results computed by the
classical analysis on domain Itv (see Example 2 and Figure 3b). To this end,
while keeping the domain Itv for the ascending phase, we will compute the de-
scending phase on the powerset domain ISet = Setfn(Itv), i.e., we will adopt the
combination Itv↑↓ISet.

Before starting the descending phase, the post-fixpoint x∇Itv computed in the
ascending phase using Itv (see the 4th column of Figure 3b) is transferred to
ISet using γItv↑↓ISet : Itv → ISet, obtaining the (singleton) sets of intervals shown
in the 2nd column of Figure 5. Then the descending phase on ISet is started:
note that we use the glb-based narrowing, with a threshold value k = 2 on the
number of iterations; the results computed by the two iterations are shown in
the 3rd and 4th columns of Figure 5.

It is now possible to perform a precision comparison of the results obtained on
domain Itv using the classical approach (last column in Figure 3b) with respect
to the results obtained with the Itv↑↓ISet combination (4th column of Figure 5):
for convenience, in the last column we show a checkmark (X) on the CFG nodes
where we actually obtain a precision improvement. Note that the post-fixpoint
computed on ISet is not a fixpoint: hence, the precision could be refined further
by increasing the threshold value k ∈ N. ut

4 Experimental Evaluation

In order to obtain a preliminary experimental evaluation of the precision gains
resulting from the proposed analysis technique, we have modified the open source
static analysis tool PAGAI [32] to allow for decoupling the ascending and de-
scending iteration phases; in particular, we have added program options to select
a different abstract domain for the descending phase, as well as to select a thresh-
old value for the number of descending iterations (this threshold is set to 3).4
In our experiments we configured PAGAI to perform a simple static analysis:
4 By design, PAGAI does not use proper narrowing operators to enforce the termina-
tion of the decreasing sequence; rather, it stops when the iteration count reaches the
threshold value (or earlier, if a fixpoint is detected).

hence, we disregard more sophisticated approaches, such as path focusing, and
we disabled those LLVM bitcode instrumentation passes that heavily modify the
CFG in order to potentially detect overflows and other runtime errors.

PAGAI is interfaced with the Apron library [33], which provides several nu-
meric domains, among which boxes [17] (Box), octagons [35] (Oct) and convex
polyhedra [21] (Pol); these non-disjunctive domains all implement the corre-
sponding “standard” widening operator. We extended Apron interface by adding
a modified version of the PPLite library [10] which, besides its enhanced imple-
mentation of the domain of convex polyhedra [7, 8], also includes a prototype
implementation of the finite powerset PSet = Setfn(Pol) of convex polyhedra [6];
since this prototype is not (yet) provided with a widening operator, it can only
be used in the descending phase of the analysis. Note that PAGAI features a
variant analysis technique that is meant to compute disjunctive invariants, but
this would yield an analysis which is quite different from the direct adoption of
a powerset domain; for instance, one would be forced to choose in advance the
maximal number of disjuncts that are allowed.

The experimental evaluation considers 35 C source files distributed with PA-
GAI, which are variants of benchmarks taken from the SNU real-time benchmark
suite for worst-case execution time analysis. PAGAI can be configured to per-
form a precision comparison among two different abstract domains (DOM1 and
DOM2): in this case, the analyzer records the invariant properties computed
by the two domains for each widening point (WP); then it compares them and
provides a final report made of four numbers, counting the widening points on
which the invariant computed by the first domain is, respectively, equivalent
(EQ), stronger (LT), weaker (GT) and uncomparable (UN) with respect to the
invariant computed by the second domain. The results of the precision compar-
isons have been summarized in Tables 1 and 2; note that, for readability, the
tables show the percentages of widening points, rather than absolute values.5

% WP
DOM1 DOM2 EQ LT GT UN ∆EQ

Box Oct 66.5 0.7 32.4 0.4
Box Box↑↓Oct 83.6 0.4 16.0 0.0

Box↑↓Oct Oct 73.0 0.7 26.3 0.0 6.4
Box Pol 53.7 3.6 37.0 5.7
Box Box↑↓Pol 76.5 0.4 23.1 0.0

Box↑↓Pol Pol 59.8 5.7 31.3 3.2 6.0
Oct Pol 69.4 6.8 21.4 2.5
Oct Oct↑↓Pol 87.2 0.0 12.8 0.0

Oct↑↓Pol Pol 72.2 8.2 18.5 1.1 2.8

Table 1: Precision comparison for non-disjunctive domains.

5 The total number of widening points is 281.

Consider first Table 1, which is meant to evaluate the effectiveness of the new
approach when both abstract domains are non-disjunctive. Note that the rows
in the table are divided in three groups (three rows per group); let us focus on
the first group, which is evaluating the precision improvements obtained when
using the abstract domain Box↑↓Oct. The first row in the group provides the
baseline for the precision comparison: in particular, the value in column EQ
(highlighted in boldface) informs us that the domain Box achieves the same
precision as Oct on 66.5% of the widening points; this means that only the
remaining 33.5% of widening points are further improvable. The second row in
the group, in particular the value in column GT, shows us that Box↑↓Oct is able
to improve the precision of Box on 16% of all widening points. The third row
in the group, in particular the value in column EQ, informs us that Box↑↓Oct
is able to achieve the same precision of Oct on 73% of the widening points: this
corresponds to an increase by 6.4% (reported in the column labeled ∆EQ) with
respect to the baseline EQ value (in the first row).

It is worth stressing that the percentages highlighted in the second and third
row of the group are computed with respect to the total number of widening
points, which might mislead the reader towards an underestimation of the ef-
fectiveness of the approach. One should observe that a precision gain on 16.0%
of all the widening points corresponds to a precision gain on almost one half
(16.0/33.5 = 47.9%) of the improvable widening points. The same reasoning
applies to the 6.4% value of ∆EQ, which corresponds to almost 20% of the
improvable widening points.

Similar observations can be derived from the second and third group of rows
in Table 1, where we evaluate the abstract domain combinations Box↑↓Pol and
Oct↑↓Pol, respectively. For instance, the third group of rows in Table 1 informs
us that Oct↑↓Pol is able to improve precision on 12.8% of all the widening points
with respect to Oct and that it increases by 2.8% the percentage of widening
points on which the same precision as Pol is obtained.

% WP Time (s)
DOM1 DOM2 EQ LT GT UN DOM1 DOM2

Box Box↑↓PSet 52.3 0.4 47.3 0.0 6.20 6.76
Oct Oct↑↓PSet 56.2 0.0 43.8 0.0 12.70 8.93
Pol Pol↑↓PSet 64.8 0.0 35.2 0.0 7.03 7.53

Table 2: Precision comparison when using PSet in the descending phase.

In Table 2 we provide the summary for the precision comparisons between
the three non-disjunctive domains Box, Oct and Pol and the corresponding en-
hanced combinations using the finite powerset of polyhedra PSet in the descend-
ing phase. Note that, in contrast with what we did in Table 1, in this case we
cannot provide a baseline comparison with PSet because, as said before, this do-
main is missing a widening operator and hence cannot be used in the ascending

phase of the analysis. The use of a powerset domain in the descending phase is
of particular interest because it should be able to avoid the over-approximations
that are incurred by the non-disjunctive domains when merging control flow
paths. In fact, the values in column GT show us that the number of widening
points where a precision improvement is obtained is significantly higher than
those of Table 1, ranging from 35.2% to 47.3%. In summary, the results in Ta-
bles 1 and 2 provide an evidence that the adoption of a more precise abstract
domain in the descending phase of the analysis is able to significantly improve
precision. Intuitively, this is due to the fact that, by changing the abstract do-
main, we are potentially improving the precision of all the abstract semantic
operators used in the descending phase (i.e., all operators except widening).

Note that we do not perform a proper efficiency comparison, because the
considered benchmark suite seems inadequate to the purpose; also, PAGAI is
a static analyzer meant to simplify experiments, rather than achieve maximum
efficiency. Hence, we merely report in the last two columns of Table 2 the overall
time spent on the 35 tests. A meaningful efficiency comparison will be the subject
of future work.

A note on the relative precision of abstract domains. A non-expert but attentive
reader may be wondering how it is possible that the more precise abstract domain
Pol can sometimes compute weaker invariants when compared to the less precise
domain Box (more generally, why column LT is not always zero). A first reason
is that widening operators are not monotonic; another reason is that the two
domains may be adopting different approximation strategies for some of the
semantic operators (e.g., when modeling non-linear tests/assignments and when
taking into account the integrality of program variables).

A technical note on the precision comparison. When comparing the invariants
computed by different abstract domains, PAGAI calls a third-party model check-
ing tool based on SMT (Satisfiability Modulo Theory), which also takes into ac-
count the integrality of program variables. Hence, when comparing the abstract
elements of different domains, we are not counting those “dummy” precision im-
provements that are simply induced by the real relaxation step. As a concrete
example, when x is an integral variable, the Box value x ∈ [0, 2], the Pol value
{0 ≤ x ≤ 2} and the PSet value { {x = 0}, {x = 1}, {x = 2} } are all consid-
ered equivalent (note that the last two would not be considered equivalent when
compared in the more precise domain PSet).

4.1 A detailed example

In Figure 6 we show a simplified version of one of the tests distributed with
PAGAI; assuming N > 1, function fib(N) computes the (N + 1)-th element
of the Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, In Table 3 we show the abstract
values computed for the one and only widening point (whose position in the code
is highlighted using a comment), first with the classical Box domain and then
using the Box↑↓PSet combination, i.e., using the finite powerset of polyhedra in

int fib(int N) {
int P = 0, F = 1;
for (int K = 2; K < N; ++K) {

/* widening point */
int tmp = F;
F += P;
P = tmp;

}
return F;

}

int main () { return fib (7); }

Fig. 6: A simplified version of fibcall.c

the descending phase. For this example, the threshold value for the number of
downward iterations is set to 10.

When using the Box domain, the ascending phase ends on the 4th iteration:
due to the use of widenings, the computed post-fixpoint has no upper bound
for variable K; the upper bound 6 is easily recovered in the first iteration of
the descending phase, which is then detected to be an abstract fixpoint on Box.
When using the Box↑↓PSet combination, the ascending phase is computed exactly
as before but, before starting the descending phase, the post-fixpoint on Box is
transferred to the PSet domain using the concretization function γ : Box → PSet,
obtaining a singleton set of polyhedra (see row labeled ‘dsc/0’). Then the analysis
proceeds by computing the descending iterates using the more precise domain
PSet; the descending sequence is able to improve precision by computing several
disjuncts, detecting the fixpoint on the 6th downward iteration.

It is worth stressing that, in this specific example, the descending sequence
is able to reach a fixpoint on PSet only because function fib is called with a
constant argument (N = 7). If instead the value of the argument was unknown,
the descending sequence on PSet would be non-stabilizing, generating a new
disjunct at each iteration. This is not a real issue because, as we already said, once
started the descending phase the static analysis can be stopped at any iteration
and still preserve correctness; a precision improvement with respect to the Box
decreasing sequence is obtained even when computing a single downward iterate.
Note that, for this detailed example, we have chosen the domain combination
Box↑↓PSet and the constant value N = 7 merely for exposition purposes, since
the computed abstract values turn out to be simpler. For instance, if using the
combination Box↑↓Pol and stopping after the 3rd downward iteration, we would
obtain as post-fixpoint the following abstract value:

{2 ≤ K ≤ 6, 3K − 3P + 2F ≥ 8, 7K − 7P − 13F ≤ 1,K + 12P − 8F ≤ 7,
K + 4P − 4F ≤ 3, 3K − 16P + 8F ≤ 14, 3K − 6P − 2F ≤ 4}.

domain phase/iter abstract value
Box asc/1 P ∈ [0, 0], F ∈ [1, 1],K ∈ [2, 2]
Box asc/2 P ∈ [0,+∞], F ∈ [1, 1],K ∈ [2,+∞]
Box asc/3 P ∈ [0,+∞], F ∈ [1,+∞],K ∈ [2,+∞]
Box asc/4 same value (detected post-fixpoint in Box)
Box dsc/1 P ∈ [0,+∞], F ∈ [1,+∞],K ∈ [2, 6]
Box dsc/2 same value (detected fixpoint in Box)
PSet dsc/0 { {P ≥ 0, F ≥ 1,K ≥ 2} }
PSet dsc/1 { {P = 0, F = 1,K = 2}, {P ≥ 1, F ≥ P, 3 ≤ K ≤ 6} }
PSet dsc/2 { {P = 0, F = 1,K = 2}, {P = 1, F = 1,K = 3},

{P + 1 ≤ F ≤ 2P, 4 ≤ K ≤ 6} }
PSet dsc/3 { {P = 0, F = 1,K = 2}, {P = 1, F = 1,K = 3},

{P = 1, F = 2,K = 4}, {3P ≤ 2F, F ≤ 2P − 1, 5 ≤ K ≤ 6} }
PSet dsc/4 { {P = 0, F = 1,K = 2}, {P = 1, F = 1,K = 3},

{P = 1, F = 2,K = 4}, {P = 2, F = 3,K = 5},
{3P + 1 ≤ 2F, 3F ≤ 5P,K = 6} }

PSet dsc/5 { {P = 0, F = 1,K = 2}, {P = 1, F = 1,K = 3},
{P = 1, F = 2,K = 4}, {P = 2, F = 3,K = 5},
{P = 3, F = 5,K = 6} }

PSet dsc/6 same value (detected fixpoint in PSet)

Table 3: Abstract values computed using Box and Box↑↓PSet.

5 Related Work

Widening operators are quite often necessary to enforce the stabilization of the
ascending iteration sequence. Sometimes they are used even in abstract domains
having no infinite ascending chains, to accelerate convergence, rather than en-
forcing it. In restricted cases, the use of widenings can be avoided even though
the domain has infinite ascending chains: sometimes it is possible to apply fix-
point acceleration techniques [25] or strategy/policy iteration [23, 24] so as to
compute the exact abstract fixpoint.

When widening operators are actually used, they also are one of the main
sources of imprecision for the static analysis. As a consequence, many techniques
try to mitigate the corresponding precision loss: [31] proposes the widening up-to
technique, which tries to preserve precision by using a fixed set of constraints,
used as widening hints; a similar approach (widening with thresholds) is used
in [11]; in [5] a framework is proposed to improve the precision of any given
widening operator using several heuristics, while still guaranteeing termination;
other generic techniques include widening with landmarks [38], lookahead widen-
ing [26], guided static analysis [27], and stratified widening [36]. Note that all of
the approaches above focus on the ascending sequence and hence are in principle
orthogonal with respect to (i.e., they can be combined with) our proposal.

The computation of the descending sequence with narrowing is just another
technique (as a matter of fact, the very first one proposed in the literature) to
mitigate the imprecision of widenings. However, narrowings have received fewer

attention,6 and it is often believed that the descending sequence can hardly im-
prove precision after a few iterations. Such a belief is probably justified when
considering abstract domains whose elements are expressible as template poly-
hedra. In particular, for the case of template polyhedra with integral bounds
(including integral boxes and octagons), [1] first shows that the abstract join
operation can be safely replaced by its left strict variant; then they prove that,
when using this join operator, the computed descending sequence cannot be
infinite. However, as witnessed by the fibcall.c example shown in Figure 6,
when adopting more precise domains the descending sequence can improve the
precision of the analysis well beyond the first few iterations. This seems to be
the case, in particular, for domains such as the finite powerset of polyhedra.

[2, 3] propose a technique to intertwine the computation of widenings and
narrowing (i.e., the computation of ascending and descending chains) during the
analysis, aiming at improving the precision of the post-fixpoint computed when
the CFG has nested loops. [13, 29] propose a technique to improve the preci-
sion of the analysis by restarting, possibly several times, the abstract (ascending
and descending) iteration sequence from a perturbation of the computed post-
fixpoint. In the proposals recalled above the abstract domain is fixed during the
runs of the analysis, i.e., the same domain is used in the ascending and descend-
ing iteration phases; hence, once again, these approaches are orthogonal with
respect to the proposal of this paper. We plan to better investigate the potential
synergies arising by integrating the intertwining of widening and narrowing of [3]
(implemented for instance in IKOS [14] and SeaHorn [28]) with our decoupling
of the ascending and descending phases: in practice, for the combination A↑↓D,
besides using the concretization function γ : A → D to transfer the ascending
post-fixpoint to domain D (as in the current proposal), we will also be using
the abstraction function α : D→ A to transfer back the descending post-fixpoint
whenever restarting the ascending phase on A.

As mentioned previously, a formal justification for the correctness of our
proposal is easily obtained by casting it as a meta-abstract interpretation (the
so-called A2I framework [20]). The pre-analysis of the CFG proposed in [12] to
reduce the number widening points can be interpreted as a very early instance
of the offline A2I approach. More recently, [34] propose an offline pre-analysis
to tailor the configuration of the static analysis tool to the specific program
being analyzed. Online (i.e., dynamically computed) meta-analyses include, for
instance, variable partitioning techniques [30, 39] and the optimized implemen-
tation of semantic operators using boxed polyhedra [9]. While there certainly are
static analysis tools that perform a non-uniform analysis (i.e., they use different
abstract domains for different portions of the program being analyzed), to the
best of our knowledge our approach is the first example of an analysis where the
whole abstract domain (and not just one of its operators) is changed during the
analysis of a single portion of code.

6 Probably, this is due to the fact that the abstract domain glb operator implements
a correct narrowing as soon as we can enforce a finite number of applications.

6 Conclusion

In this paper we have proposed a novel yet simple variation of the typical ap-
proach used in static analysis by abstract interpretation, where we decouple the
ascending and descending phases of the abstract semantics computation. We
use an abstract domain combination denoted A↑↓D, meaning that the ascending
phase uses an (ascending) abstract domain A, while the descending phase uses
a strictly more precise (descending) abstract domain D. We have implemented
our approach by extending the static analysis tool PAGAI and studied its effec-
tiveness on several, different choices for A and D of classical numerical abstract
domains, including boxes, octagons, convex polyhedra and sets of polyhedra.
Our preliminary experimental results show that decoupling the ascending and
descending phases in A↑↓D allows to obtain significant precision improvements
when compared with a classical static analysis computing on A. In particular,
the choice of a disjunctive domain for the descending phase seems promising.

Even though this preliminary experimental evaluation is not adequate for
assessing the impact on efficiency (in particular, scalability) of the proposed ap-
proach, we conjecture that the idea of using a more precise domain D only in the
descending phase naturally leads to a more easily tunable efficiency/precision
tradeoff. We would also like to stress that our approach is not really meant to be
used uniformly on all the code being analyzed; rather, the idea is to selectively
enable it on those portions of the program where a precision gain would be desir-
able, but scalability issues likely prevent to perform the whole analysis using the
more precise (and usually less efficient) domain D. As a consequence, an interest-
ing problem that will be studied in future work is how to automatically identify
those parts of the program where the decoupled approach is going to be more
helpful. In particular, we plan to investigate the effectiveness of simple heuristics
(e.g., suitable metrics on the CFG of a function) as well as more sophisticated
approaches possibly based on machine learning techniques. Going even further,
we could not only select where to enable the more concrete descending domain
D, but also drive the choice of the descending domain D. In particular, we can
observe that precision of static analysis is an intensional property, namely it de-
pends on the way the program is written [15,16]. This implies that, we can drive
the choice of the descending domain depending on the syntactic characteristics of
expressions (guards and assignments) that, in the program, we effectively aim to
analyze, since precisely these expressions are the program elements determining
the precision of the analyzer [16].

By studying the results of the experimental evaluation, one can also observe
that, in a high percentage of cases, the analysis with A↑↓D is able to produce
the same analysis results of the more precise domain D (e.g., Box↑↓Oct obtains
the same results of Oct in 73% of the widening points for the considered bench-
marks). This suggests an alternative usage of the decoupled approach, starting
from rather different motivations: instead of improving the precision of a classi-
cal analysis on A using the more precise combination A↑↓D (as discussed above),
one may try to improve the efficiency of a classical analysis on D by adopting
the less precise combination A↑↓D. In such a context, one would be interested

in identifying those portions of the program where the decoupled approach is
anyway as precise as the classical approach using D; once again, from a practical
point of view, this problem can be addressed using heuristics and/or machine
learning techniques. The same problem can also be addressed from a more theo-
retical point of view, leading to the following research question: “For a program
P and an abstract domain D, which is the less precise domain A such that the
decoupled approach A↑↓D yields the same results of D on P?”

References

1. Amato, G., Di Nardo Di Maio, S., Meo, M., Scozzari, F.: Descending chains and
narrowing on template abstract domains. Acta Informatica 55(6), 521–545 (2018).
https://doi.org/10.1007/s00236-016-0291-0

2. Amato, G., Scozzari, F.: Localizing widening and narrowing. In: Logozzo, F., Fäh-
ndrich, M. (eds.) Static Analysis - 20th International Symposium, SAS 2013, Seat-
tle, WA, USA, June 20-22, 2013. Proceedings. Lecture Notes in Computer Science,
vol. 7935, pp. 25–42. Springer (2013). https://doi.org/10.1007/978-3-642-38856-
9_4

3. Amato, G., Scozzari, F., Seidl, H., Apinis, K., Vojdani, V.: Efficiently inter-
twining widening and narrowing. Sci. Comput. Program. 120, 1–24 (2016).
https://doi.org/10.1016/j.scico.2015.12.005

4. Arceri, V., Mastroeni, I., Xu, S.: Static analysis for ecmascript string manipulation
programs. Appl. Sci. 10, 3525 (2020). https://doi.org/10.3390/app10103525

5. Bagnara, R., Hill, P., Ricci, E., Zaffanella, E.: Precise widening opera-
tors for convex polyhedra. Sci. Comput. Program. 58(1-2), 28–56 (2005).
https://doi.org/10.1016/j.scico.2005.02.003

6. Bagnara, R., Hill, P., Zaffanella, E.: Widening operators for powerset
domains. Int. J. Softw. Tools Technol. Transf. 8(4-5), 449–466 (2006).
https://doi.org/10.1007/s10009-005-0215-8

7. Becchi, A., Zaffanella, E.: A direct encoding for NNC polyhedra. In: Chockler,
H., Weissenbacher, G. (eds.) Computer Aided Verification - 30th International
Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018,
Oxford, UK, July 14-17, 2018, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 10981, pp. 230–248. Springer (2018). https://doi.org/10.1007/978-3-
319-96145-3_13

8. Becchi, A., Zaffanella, E.: An efficient abstract domain for not necessarily closed
polyhedra. In: Podelski, A. (ed.) Static Analysis - 25th International Sympo-
sium, SAS 2018, Freiburg, Germany, August 29-31, 2018, Proceedings. Lec-
ture Notes in Computer Science, vol. 11002, pp. 146–165. Springer (2018).
https://doi.org/10.1007/978-3-319-99725-4_11

9. Becchi, A., Zaffanella, E.: Revisiting polyhedral analysis for hybrid systems. In:
Chang, B. (ed.) Static Analysis - 26th International Symposium, SAS 2019, Porto,
Portugal, October 8-11, 2019, Proceedings. Lecture Notes in Computer Science,
vol. 11822, pp. 183–202. Springer (2019). https://doi.org/10.1007/978-3-030-32304-
2_10

10. Becchi, A., Zaffanella, E.: PPLite: zero-overhead encoding of NNC polyhedra. Inf.
Comput. 275, 104620 (2020). https://doi.org/10.1016/j.ic.2020.104620

11. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: Cytron, R.,

Gupta, R. (eds.) Proceedings of the ACM SIGPLAN 2003 Conference on Program-
ming Language Design and Implementation 2003, San Diego, California, USA, June
9-11, 2003. pp. 196–207. ACM (2003). https://doi.org/10.1145/781131.781153

12. Bourdoncle, F.: Efficient chaotic iteration strategies with widenings. In: Bjørner,
D., Broy, M., Pottosin, I. (eds.) Formal Methods in Programming and Their Ap-
plications, International Conference, Akademgorodok, Novosibirsk, Russia, June
28 - July 2, 1993, Proceedings. Lecture Notes in Computer Science, vol. 735, pp.
128–141. Springer (1993). https://doi.org/10.1007/BFb0039704

13. Boutonnet, R., Halbwachs, N.: Improving the results of program analysis by ab-
stract interpretation beyond the decreasing sequence. Formal Methods Syst. Des.
53(3), 384–406 (2018). https://doi.org/10.1007/s10703-017-0310-y

14. Brat, G., Navas, J., Shi, N., Venet, A.: IKOS: A framework for static analysis based
on abstract interpretation. In: Giannakopoulou, D., Salaün, G. (eds.) Software
Engineering and Formal Methods - 12th International Conference, SEFM 2014,
Grenoble, France, September 1-5, 2014. Proceedings. Lecture Notes in Computer
Science, vol. 8702, pp. 271–277. Springer (2014). https://doi.org/10.1007/978-3-
319-10431-7_20

15. Bruni, R., Giacobazzi, R., Gori, R., Garcia-Contreras, I., Pavlovic, D.: Abstract
extensionality: on the properties of incomplete abstract interpretations. Proc. ACM
Program. Lang. 4(POPL), 28:1–28:28 (2020)

16. Bruni, R., Giacobazzi, R., Gori, R., Ranzato, F.: A logic for locally complete ab-
stract interpretations. In: 36th Annual ACM/IEEE Symposium on Logic in Com-
puter Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021. pp. 1–13. IEEE
(2021)

17. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Conference
Record of the Fourth ACM Symposium on Principles of Programming Languages,
Los Angeles, California, USA, January 1977. pp. 238–252 (1977)

18. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Con-
ference Record of the Sixth Annual ACM Symposium on Principles of Program-
ming Languages, San Antonio, Texas, USA, January 1979. pp. 269–282 (1979)

19. Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. Log. Comput. 2(4),
511–547 (1992). https://doi.org/10.1093/logcom/2.4.511

20. Cousot, P., Giacobazzi, R., Ranzato, F.: A2I: abstract2 interpretation. Proc. ACM
Program. Lang. 3(POPL), 42:1–42:31 (2019). https://doi.org/10.1145/3290355

21. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among vari-
ables of a program. In: Aho, A., Zilles, S., Szymanski, T. (eds.) Conference
Record of the Fifth Annual ACM Symposium on Principles of Programming
Languages, Tucson, Arizona, USA, January 1978. pp. 84–96. ACM Press (1978).
https://doi.org/10.1145/512760.512770

22. Cousot, P., Cousot, R.: Comparing the galois connection and widening/narrow-
ing approaches to abstract interpretation. In: Bruynooghe, M., Wirsing, M. (eds.)
Programming Language Implementation and Logic Programming, 4th Interna-
tional Symposium, PLILP’92, Leuven, Belgium, August 26-28, 1992, Proceed-
ings. Lecture Notes in Computer Science, vol. 631, pp. 269–295. Springer (1992).
https://doi.org/10.1007/3-540-55844-6_142

23. Gaubert, S., Goubault, E., Taly, A., Zennou, S.: Static analysis by policy iteration
on relational domains. In: Nicola, R.D. (ed.) Programming Languages and Systems,
16th European Symposium on Programming, ESOP 2007, Held as Part of the
Joint European Conferences on Theory and Practics of Software, ETAPS 2007,

Braga, Portugal, March 24 - April 1, 2007, Proceedings. Lecture Notes in Computer
Science, vol. 4421, pp. 237–252. Springer (2007). https://doi.org/10.1007/978-3-
540-71316-6_17

24. Gawlitza, T., Seidl, H.: Precise fixpoint computation through strategy iteration.
In: Nicola, R.D. (ed.) Programming Languages and Systems, 16th European Sym-
posium on Programming, ESOP 2007, Held as Part of the Joint European Confer-
ences on Theory and Practics of Software, ETAPS 2007, Braga, Portugal, March
24 - April 1, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4421, pp.
300–315. Springer (2007). https://doi.org/10.1007/978-3-540-71316-6_21

25. Gonnord, L., Halbwachs, N.: Combining widening and acceleration in lin-
ear relation analysis. In: Yi, K. (ed.) Static Analysis, 13th International
Symposium, SAS 2006, Seoul, Korea, August 29-31, 2006, Proceedings. Lec-
ture Notes in Computer Science, vol. 4134, pp. 144–160. Springer (2006).
https://doi.org/10.1007/11823230_10

26. Gopan, D., Reps, T.: Lookahead widening. In: Ball, T., Jones, R. (eds.) Computer
Aided Verification, 18th International Conference, CAV 2006, Seattle, WA, USA,
August 17-20, 2006, Proceedings. Lecture Notes in Computer Science, vol. 4144,
pp. 452–466. Springer (2006). https://doi.org/10.1007/11817963_41

27. Gopan, D., Reps, T.: Guided static analysis. In: Nielson, H., Filé, G. (eds.) Static
Analysis, 14th International Symposium, SAS 2007, Kongens Lyngby, Denmark,
August 22-24, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4634,
pp. 349–365. Springer (2007). https://doi.org/10.1007/978-3-540-74061-2_22

28. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.: The seahorn verification
framework. In: Kroening, D., Pasareanu, C. (eds.) Computer Aided Verification
- 27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-
24, 2015, Proceedings, Part I. Lecture Notes in Computer Science, vol. 9206, pp.
343–361. Springer (2015). https://doi.org/10.1007/978-3-319-21690-4_20

29. Halbwachs, N., Henry, J.: When the decreasing sequence fails. In: Miné, A.,
Schmidt, D. (eds.) Static Analysis - 19th International Symposium, SAS 2012,
Deauville, France, September 11-13, 2012. Proceedings. Lecture Notes in Computer
Science, vol. 7460, pp. 198–213. Springer (2012). https://doi.org/10.1007/978-3-
642-33125-1_15

30. Halbwachs, N., Merchat, D., Gonnord, L.: Some ways to reduce the space dimen-
sion in polyhedra computations. Formal Methods Syst. Des. 29(1), 79–95 (2006).
https://doi.org/10.1007/s10703-006-0013-2

31. Halbwachs, N., Proy, Y., Raymond, P.: Verification of linear hybrid systems by
means of convex approximations. In: Charlier, B.L. (ed.) Static Analysis, First
International Static Analysis Symposium, SAS’94, Namur, Belgium, September
28-30, 1994, Proceedings. Lecture Notes in Computer Science, vol. 864, pp. 223–
237. Springer (1994). https://doi.org/10.1007/3-540-58485-4_43

32. Henry, J., Monniaux, D., Moy, M.: PAGAI: A path sensitive static
analyser. Electron. Notes Theor. Comput. Sci. 289, 15–25 (2012).
https://doi.org/10.1016/j.entcs.2012.11.003

33. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) Computer Aided Verification, 21st
International Conference, CAV 2009, Grenoble, France, June 26 - July 2, 2009.
Proceedings. Lecture Notes in Computer Science, vol. 5643, pp. 661–667. Springer
(2009). https://doi.org/10.1007/978-3-642-02658-4_52

34. Mansur, M., Mariano, B., Christakis, M., Navas, J., Wüstholz, V.: Automatically
tailoring abstract interpretation to custom usage scenarios. In: Silva, A., Leino, K.

(eds.) Computer Aided Verification - 33rd International Conference, CAV 2021,
Virtual Event, July 20-23, 2021, Proceedings, Part II. Lecture Notes in Computer
Science, vol. 12760, pp. 777–800. Springer (2021). https://doi.org/10.1007/978-3-
030-81688-9_36

35. Miné, A.: The octagon abstract domain. High. Order Symb. Comput. 19(1), 31–100
(2006). https://doi.org/10.1007/s10990-006-8609-1

36. Monniaux, D., Guen, J.L.: Stratified static analysis based on variable
dependencies. Electron. Notes Theor. Comput. Sci. 288, 61–74 (2012).
https://doi.org/10.1016/j.entcs.2012.10.008

37. Nielson, F., Nielson, H., Hankin, C.: Principles of program analysis. Springer
(1999). https://doi.org/10.1007/978-3-662-03811-6

38. Simon, A., King, A.: Widening polyhedra with landmarks. In: Kobayashi,
N. (ed.) Programming Languages and Systems, 4th Asian Symposium,
APLAS 2006, Sydney, Australia, November 8-10, 2006, Proceedings. Lec-
ture Notes in Computer Science, vol. 4279, pp. 166–182. Springer (2006).
https://doi.org/10.1007/11924661_11

39. Singh, G., Püschel, M., Vechev, M.: Fast polyhedra abstract domain. In: Castagna,
G., Gordon, A. (eds.) Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, POPL 2017, Paris, France, January 18-20,
2017. pp. 46–59. ACM (2017). https://doi.org/10.1145/3009837.3009885

	Decoupling the Ascending and Descending Phases in Abstract Interpretation

