
Noname manuscript No.
(will be inserted by the editor)

Challenges of Software Verification

Vincenzo Arceri · Luca Negrini · Luca Olivieri · Pietro Ferrara

the date of receipt and acceptance should be inserted later

Abstract Software verification aims to prove that a

program satisfies some given properties for all its possi-

ble executions. Software evolved incredibly fast during

the last century, exposing several challenges to this sci-

entific discipline. The goal of the “Challenges of Soft-

ware Verification Symposium” is to monitor the state-

of-the-art in this field. This special issue of Software

Tools for Technology Transfer presents novel theoreti-

cal directions and practical applications of these tech-

niques. The papers in this special issue are extended

versions of selected symposium papers from the pro-

ceedings of the 3rd Challenges of Software Verification

Symposium (CSV), which took place at the Ca’ Foscari

University of Venice, Venice, Italy, from June 6th and

7th, 2024.

1 The History of the CSV Symposium

The first edition1 of the “Challenges of Software Verifi-

cation Symposium” was held on May 20th, 2022, after

the ceremony awarding Prof. Patrick Cousot a PhD in

Computer Science Honoris Causa by the Ca’ Foscari

Vincenzo Arceri
University of Parma, Parma, Italy
E-mail: vincenzo.arceri@unipr.it

Luca Negrini
Ca’ Foscari University, Venice, Italy
E-mail: luca.negrini@unive.it

Luca Olivieri
Ca’ Foscari University, Venice, Italy
E-mail: luca.olivieri@unive.it

Pietro Ferrara
Ca’ Foscari University, Venice, Italy
E-mail: pietro.ferrara@unive.it

1 https://unive-ssv.github.io/events/2022/05/20/csv.

html

University of Venice. The symposium featured 15 in-

vited short talks (15 minutes each), and extended ver-

sions of some of the talks were featured in Springer

Nature [1].

Having gathered interest from the community, the

second edition2 of the Symposium was held May 25th

and 26th, 2023, covering theoretical results in the soft-

ware verification field and their applications, presenting

new tools and their impact on the Software Engineer-

ing community. The symposium comprised 18 invited

full talks (30 minutes each), split into several sessions

on theoretical and practical aspects of static analysis,

abstract interpretation, software engineering, and secu-

rity. Extended versions of selected talks were featured

in a Special Section of the journal Software Tools for

Technology Transfer [4].

The third edition3 of the Symposium was held on

June 6th and 7th, 2024, following the format and top-

ics of the previous edition. 21 invited researchers from

international institutions presented their work at the

Symposium, engaging in full talks (30 minutes each),

and this special issue of the journal Software Tools for

Technology Transfer (STTT) collects revised and ex-

tended versions of 8 such talks.

2 This Special Issue

The guest editors invited a selection of the speakers of

CSV 2024 to submit extended versions of their presen-

tations, which were all peer-reviewed by at least three

referees in a single-blind process.

2 https://unive-ssv.github.io/events/2023/05/25/csv.

html
3 https://unive-ssv.github.io/events/2024/06/06/csv.

html

https://unive-ssv.github.io/events/2022/05/20/csv.html
https://unive-ssv.github.io/events/2022/05/20/csv.html
https://unive-ssv.github.io/events/2023/05/25/csv.html
https://unive-ssv.github.io/events/2023/05/25/csv.html
https://unive-ssv.github.io/events/2024/06/06/csv.html
https://unive-ssv.github.io/events/2024/06/06/csv.html


2 Vincenzo Arceri et al.

The papers selected for final publication not only

present advances in the field of software verification [8,

5,7], but bring contributions aimed at improving or sim-

plifying software engineering practices [9,3], at proving

the correctness of complex systems [10,2], and at sim-

plifying the development and maintenance of academic

tools [6].

In the following sections, we provide a summary of

each paper featured in this special issue.

2.1 Easing Maintenance of Academic Static Analyzers

[6]

Academic research in static analysis produces software

implementations. These implementations are time-consuming

to develop, and some need to be maintained in order to

enable building further research upon the implementa-

tion. While necessary, these processes can be quickly

challenging. This article documents the tools and tech-

niques the authors have come up with to simplify the

maintenance of Mopsa since 2017. Mopsa is a static

analysis platform that aims to be sound. First, the au-

thors describe an automated way to measure precision

that does not require any baseline of true bugs ob-

tained by manually inspecting the results. Further, it

improves the transparency of the analysis and helps dis-

cover regressions during the continuous integration pro-

cess. Second, the authors have taken inspiration from

standard tools observing the concrete execution of a

program to design custom tools observing the abstract

execution of the analyzed program itself, such as ab-

stract debuggers and profilers. Finally, the authors re-

port on some cases of automated test case reduction.

2.2 IntraJ: An On-Demand Framework for

Intraprocedural Java Code Analysis [7]

Static analysis tools play an important role in soft-

ware development by detecting bugs and vulnerabili-

ties. However, running these tools separately from the

code editing process often causes developers to switch

contexts, which can reduce productivity. Previous work

has shown how Reference Attribute Grammars (RAGs)

can be used for declarative implementation of compet-

itive tooling for intraprocedural control-flow and data-

flow analysis of Java source code, embodied in the tool

IntraJ. In this paper, the authors demonstrate how

IntraJ can be leveraged to provide interactive analysis

results directly in the editor, similar to compile-time er-

ror detection, relying on automatic on-demand evalua-

tion of Reference Attribute Grammars. The authors dis-

cuss the architecture of IntraJ and demonstrate how it

can be integrated into the development process in three

different ways: in the command line, in an editor inte-

gration based on the Language Server Protocol, and in

an integration with the debugging tool CodeProber.

The authors showcase the extensibility of IntraJ by

illustrating how new client analyses and language con-

structs can be added to the framework through Refer-

ence Attribute Grammar specifications. Finally, the au-

thors evaluate the interactive performance of IntraJ

on a set of real-world Java benchmarks, demonstrating

that IntraJ can provide interactive feedback to devel-

opers, achieving a response time of under 0.1 seconds

for most compilation units.

2.3 ccReact: a Rewriting Framework for the Formal

Analysis of Reaction Systems [2]

Reaction Systems (RSs) are a computational frame-

work inspired by biochemical systems, where entities

produced by reactions can enable or inhibit other re-

actions. RSs interact with the environment through a

sequence of sets of entities called the context. In this

work, the authors introduce ccReact, a novel inter-

action language for implementing and verifying RSs.

ccReact extends the classical RS model by allowing the

specification of recursive, non-deterministic, and condi-

tional context sequences, thus enhancing the interactive

capabilities of the models.

The authors provide a rewriting logic (RL) seman-

tics for ccReact, making it executable in the Maude

system. The authors prove that our RL embedding is

sound and complete, thereby offering a robust tool for

analyzing RSs. Our approach enables various formal
analysis techniques for RSs, including the simulation of

RSs interacting with ccReact processes, the verifica-

tion of reachability properties, model checking of tem-

poral (LTL and CTL) formulas, and the exploration of

the system evolution through a graphical tool to better

understand its behavior. The authors apply our meth-

ods to analyze RSs from different domains, including

computer science and biological systems. Notably, the

authors examine a complex breast cancer case study,

demonstrating that our analysis can suggest improve-

ments to the administration of monoclonal antibody

therapeutic treatments in certain scenarios.

2.4 The digest framework: Concurrency-sensitivity for

abstract interpretation [8]

Thread-modular approaches to static analysis help mit-

igate the state space explosion encountered when an-

alyzing multi-threaded programs. This is enabled by



Challenges of Software Verification 3

abstracting away some aspects of interactions between

threads. This paper proposes the notion of concurrency-

sensitivity, which determines how an analysis takes the

computation history of a multi-threaded program into

account to exclude spurious thread interactions. Just as

for other form of sensitivity, such as flow-, context, and

path-sensitivity, there is a trade-off to be made between

precision and scalability. The choice of concurrency-

sensitivity is typically hard-coded into the analysis en-

gine. However, the suitability of a chosen sensitivity

hinges on the program and property to be analyzed.

The authors thus propose to decouple the concurrency-

sensitivity from the analysis and realize this in a generic

framework. The framework allows for the seamless in-

corporation of custom abstractions of the computation

history of a thread, so-called digests, to exclude spurious

thread interactions. While concrete digests track prop-

erties precisely, the framework enables further abstrac-

tion through abstract digests. These may decrease the

analysis cost while hopefully retaining precision for the

property of interest. The authors propose digests that,

e.g., track held mutexes, thread IDs, or observed events.

Digests tailored to programming language features, e.g.,

condition variables or recursive mutexes, highlight the

framework’s versatility.

2.5 Abstract Domain Adequacy: Weakening

Completeness towards Static Analysis Precision [5]

Abstract interpretation offers sound and decidable ap-

proximations for undecidable queries related to pro-

gram behavior. The effectiveness of an abstract domain

is entirely reliant on the abstract domain itself, and

the worst-case scenario is when the abstract interpreter

responds with “don’t know”, indicating that anything

could happen during runtime. Conversely, a desirable

outcome is when the abstract interpreter provides in-

formation that exceeds a specified level of precision, re-

sulting in a more precise answer. The concept of com-

pleteness relates to the precision level forfeited when

performing computations within the abstract domain.

The authors focus on the domain’s ability to express

program behavior, which the authors refer to as ade-

quacy. This paper presents a domain refinement strat-

egy toward adequacy and a simple sound proof sys-

tem for adequacy designed to determine whether an

abstract domain can provide satisfactory responses to

specified program queries. Notably, this proof system is

both language and domain-agnostic and can be readily

incorporated to support static program analysis.

2.6 Reformulating Regression Test Suite Optimization

using Quantum Annealing - an Empirical Study [9]

Maintaining software quality is crucial in the dynamic

landscape of software development. Regression testing

ensures that software works as expected after changes

are implemented. However, re-executing all test cases

for every modification is often impractical and costly,

particularly for large systems. Although very effective,

traditional test suite optimization techniques are often

impractical in resource-constrained scenarios, as they

are computationally expensive. Hence, quantum com-

puting solutions have been developed to improve their

efficiency but have shown drawbacks in terms of effec-

tiveness. The authors propose reformulating the regres-

sion test case selection problem to use quantum compu-

tation techniques better. Our objectives are (i) to pro-

vide more efficient solutions than traditional methods

and (ii) to improve the effectiveness of previously pro-

posed quantum-based solutions. The authors propose

SelectQA, a quantum annealing approach that can out-

perform the quantum-based approach BootQA in terms

of effectiveness while obtaining results comparable to

those of the classic Additional Greedy and DIV-GA ap-

proaches. Regarding efficiency, SelectQA outperforms

DIV-GA and has similar results with the Additional

Greedy algorithm but is exceeded by BootQA.

2.7 Leveraging Static Analysis for Cost-aware

Serverless Scheduling Policies [3]

Mainstream serverless platforms follow opinionated and

hard-coded scheduling policies to allocate functions on

the available workers. Such policies may decrease the

performance of the application due to locality issues

(e.g., functions executed on workers far from the data

they use). APP is a platform-agnostic declarative lan-

guage that mitigates these problems by allowing server-

less platforms to support multiple per-function schedul-

ing logics. However, defining the “right” scheduling pol-

icy in APP is far from trivial, often requiring rounds of

refinement involving knowledge of the underlying in-

frastructure, guesswork, and empirical testing.

The authors propose a framework that lightens the

burden on the shoulders of users by deriving cost in-

formation from the functions, via static analysis, into

a cost-aware variant of APP that they call cAPP. They

present a prototype of such framework, where they ex-

tract cost equations from functions’ code, synthesise

cost expressions through off the-shelf solvers, and im-

plement cAPP to support the specification and execution

of cost-aware allocation policies.



4 Vincenzo Arceri et al.

2.8 Inference of Access Policies through Static

Analysis [10]

Robot Operating System 2 (ROS 2) is the de-facto stan-

dard framework for developing distributed robotic ap-

plications. However, ensuring the correctness and se-

curity of these applications remains a significant chal-

lenge. This paper presents a novel approach to statically

analyze ROS 2 applications using abstract interpreta-

tion. By extracting the computational graph of the ap-

plication, our method derives minimal access control

policies that can be use to leverage security. The au-

thors implemented our approach using the Library for

Static Analysis (LiSA), providing a toolset that facili-

tates the development of sound static analyzers for ROS

2. The results demonstrate the effectiveness of our ap-

proach in enhancing the security of ROS 2 applications.

Acknowledgments

We thank all the authors for their contributions, the or-

ganizers of CSV 2024 for their work in making the event

possible, and the referees who reviewed the extended

versions of the papers that appear in this special issue.

Work partially supported by SERICS (PE00000014 –

CUP H73C2200089001) under the NRRP MUR pro-

gram funded by the EU – NGEU, and by iNEST –

Interconnected NordEst Innovation Ecosystem funded

by PNRR (Mission 4.2, Investment 49 1.5) NextGener-

ation EU (ECS 00000043 – CUP H43C22000540006).

References

1. Arceri, V., Cortesi, A., Ferrara, P., Olliaro, M., et al.:
Challenges of Software Verification. Springer (2023)

2. Ballis, D., Brodo, L., Falaschi, M., Olarte, C.: ccreact:
a rewriting framework for the formal analysis of reac-
tion systems. International Journal on Software Tools
for Technology Transfer (this issue) (2025)

3. De Palma, G., Giallorenzo, S., Laneve, C., Mauro, J.,
Trentin, M., Zavattaro, G.: Leveraging static analysis for
cost-aware serverless scheduling policies. International
Journal on Software Tools for Technology Transfer (this
issue) (2025)

4. Ferrara, P., Arceri, V., Cortesi, A.: Challenges of software
verification: the past, the present, the future. Interna-
tional Journal on Software Tools for Technology Transfer
26(4), 421–430 (2024)

5. Mastroeni, I.: Abstract domain adequacy: Weakening
completeness towards static analysis precision. Interna-
tional Journal on Software Tools for Technology Transfer
(this issue) (2025)

6. Monat, R., Ouadjaout, A., Miné, A.: Easing maintenance
of academic static analyzers. International Journal on
Software Tools for Technology Transfer (this issue) (2025)

7. Riouak, I., Fors, N., Hedin, G., Reichenbach, C.: Intraj:
An on-demand framework for intraprocedural java code
analysis. International Journal on Software Tools for
Technology Transfer (this issue) (2025)

8. Schwarz, M., Erhand, J.: The digest framework:
Concurrency-sensitivity for abstract interpretation. In-
ternational Journal on Software Tools for Technology
Transfer (this issue) (2025)

9. Trovato, A., De Stefano, M., Pecorelli, F., Di Nucci, D.,
De Lucia, A.: Reformulating regression test suite opti-
mization using quantum annealing - an empirical study.
International Journal on Software Tools for Technology
Transfer (this issue) (2025)

10. Zanatta, G., Caiazza, G., Ferrara, P., Negrini, L.: Infer-
ence of access policies through static analysis. Interna-
tional Journal on Software Tools for Technology Transfer
(this issue) (2025)


	The History of the CSV Symposium
	This Special Issue

