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Once deployed in blockchain, smart contracts become immutable: attackers can exploit bugs and vulnerabilities
in their code, that cannot be replaced with a bug-free version. For this reason, the verification of smart contracts
before they are deployed in blockchain is important. However, the development of verification tools is not easy,
especially if one wants to obtain guarantees by using formal methods. This paper describes the development,
from scratch, of a static analyzer based on abstract interpretation for the verification of real-world Tezos smart
contracts. The analyzer is generic with respect to the property under analysis. This paper shows taint analysis
as a concrete instantiation of the analyzer, at different levels of precision, to detect untrusted cross-contract
invocations.
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1 INTRODUCTION
In recent years, blockchain-based technologies have seen a growing interest in both academia and
industry. Blockchains are abstract shared data structures where data is immutable, distributed, and
decentralized. In this context, smart contracts are programs stored as data, that can be executed
within the blockchain. They were conceived as a set of promises, specified in digital form, namely
contracts [2]. However, their purpose is now blurred, given the generality of the software that can
run within modern blockchains, especially after the introduction of Turing-complete languages
for smart contract implementation. Once a smart contract is deployed in blockchain, it becomes
immutable, exactly like any other data, and it is impossible to modify its code. For this reason,
contract implementations must be secure against attacks and bug-free, before their deployment in
blockchain to avoid unexpected execution behaviors. In this context, formal verification techniques
allow one to analyze software with mathematical theories and ensure the presence or absence
of certain code properties, bugs, and vulnerabilities. However, according to Ferrara et al. [20],
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Fig. 1. Development pipeline of Tezos smart contracts.

tools based on formal methods require a significant theoretical background as well as consolidated
programming skills for designing and implementing a new analysis.
This paper presents an experience report on the design and implementation from scratch of

MichelsonLiSA1, a static analyzer based on abstract interpretation for the verification of smart
contracts executing on the Tezos blockchain, henceforth just referred to as Tezos smart contracts.
It shows how LiSA [20, 33, 34] (Library for Static Analysis) facilitates this task, also for low-level
languages such as Michelson [37], and how the peculiarities of smart contracts enable analyses
that typically could not be applied to traditional software.

Contributions. This paper is an extended version of [39]. Compared to [39], it expands and
clarifies all contents, providing detailed information about the design and implementation choices
underlying MichelsonLiSA. Moreover, it instantiates MichelsonLiSA with taint analysis, to spot
untrusted inter-contract invocations (UCCIs). Lastly, it reports experiments that demonstrate the
applicability of techniques that typically do not scale for traditional software, while they do work
instead on smart contracts, thanks to their conciseness.

Paper structure. Section 2 and Section 3 provide preliminary notions on Tezos smart contracts
and blockchain software verification, respectively. Section 4 highlights design and implementation
choices related to the development of MichelsonLiSA. Section 5 describes the development process
of MichelsonLiSA. Section 6 uses taint analysis to detect untrusted cross-contract invocations and
introduces a three levels version to improve the analysis results. Section 7 reports related work.
Section 8 concludes the paper.

2 TEZOS SMART CONTRACTS
Tezos [23] is a public permissionless blockchain based on the proof-of-stake consensus, that supports
Turing-complete smart contracts. In the Tezos ecosystem, there are several frameworks for the
development of smart contracts, such as Archetype [3], LIGO [27], and SmartPy [52]. Most of them
exploit meta-programming to develop smart contracts. Meta-programming is already widely used
in many blockchains [2, 10, 18, 35, 44, 54], since it allows one to develop smart contracts in different
high-level languages, that all compile to a single, normally low-level target language. In this way, it
1https://github.com/lisa-analyzer/michelson-lisa
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Instruction Description
ADDRESS pop a contract value and push the address of that contract
AMOUNT push the amount of the current transaction
BALANCE push the current amount of mutez of the executing contract
CHAIN_ID push the chain identifier
CONTRACT replace the top of the stack after cast to a contract type
CREATE_CONTRACT push a contract creation operation
IMPLICIT_ACCOUNT push the address of a new implicit account
LEVEL push the current block level
NOW push the block timestamp
SELF push the current contract
SELF_ADDRESS push the address of the current contract
SENDER push the contract that started the current internal transaction
SET_DELEGATE push a delegation operation
SOURCE push the contract that initiated the current transaction
TOTAL_VOTING_POWER push the total voting power of all contracts
TRANSFER_TOKENS push a transaction operation
VOTING_POWER push the voting power of a contract

Table 1. Domain-specific operations of Michelson.

is possible to switch between popular high-level languages based on the programmer’s preference
and project requirements, keeping the low-level code compatible. Development frameworks for
Tezos support popular high-level programming languages (e.g., Python, OCaml, and TypeScript),
all compiled to the Michelson low-level language [37]. This is the only target language of the Tezos
blockchain (see Figure 1).

Michelson is a statically-typed domain-specific bytecode language, expressive enough to imple-
ment Turing-complete smart contracts. The memory model is stack-based and data are manipulated
in a last-in-first-out (LIFO) order. Currently, Michelson consists of around 100 bytecode instruc-
tions2: for stack manipulation (PUSH, DROP, SWAP, . . . ), for creation and management of high-level
data structures (MAP, UPDATE, SIZE, . . . ), for arithmetic operations (SUM, SUB, AND, . . . ), for control
flow (IF, LOOP, . . . ) and blockchain-specific ones (see Table 1).

Figure 2 shows a Tezos smart contract written in SmartPy (Figure 2a), a subset of Python, and its
translation into Michelson (Figure 2b) obtained with the SmartPy [52] compiler. Figure 2a shows
2https://tezos.gitlab.io/michelson-reference

1 import smartpy

2
3 # smart contract definition

4 class MyAdd(smartpy.Contract):

5 def __init__(self):

6 self.init(value = 0)

7
8 @smartpy.entry_point

9 def add(self , x, y):

10 self.data.value = x + y

(a) Python code

1 parameter (pair %add (int %x) (int %y));

2 storage int;
3 code
4 {

5 CAR; # @parameter

6 # == add ==

7 # self.data.value = params.x + params.y

8 # @parameter

9 UNPAIR; # int : int

10 ADD; # int

11 NIL operation; # list operation : int

12 PAIR; # pair (list operation) int

13 };

(b) Michelson code

Fig. 2. Meta-programming development: from Python to Michelson.
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Stack

Pair(Pair(5, 9), 0)

Stack

Pair(5, 9)

Stack

9

5

Stack

14

Stack

14

list operation {}

Stack

Pair (list operation {}, 14)

The current value
in storage of 
blockchain

The parameter
value as input 
to the smart 
contract

CAR UNPAIR ADD NIL PAIR

Consume a pair
and push the left
value on the top 
of the stack

Consume a pair
and push the two
values on the top 
of the stack

Consume two values on the top 
of the stack. After, it perform
and addition and push the result
on the top of the stack

Push an empty
list of operation
type on the top 
of the stack

Consume the two
top elements and 
return a pair of 
them

The new storage 
value proposed
in blockchain

List of internal
operations required at
the end of execution

Fig. 3. An example of execution of the smart contract in Figure 2b.

that SmartPy contracts are defined as a class that inherits from smartpy.Contract (line 4). A
contract has a state and one or more entry points, annotated with @smartpy.entry_point (line 8).
The constructor __init__ (line 5) calls self.init (an alias of self.init_storage(arg = None,
**kwargs)) and initializes the fields that make up the contract state (the storage of the smart
contract). In particular, the behavior of the program in Figure 2a is to initialize the storage with
the value 0 (line 6), after which blockchain users can call, through a transaction, the method
add(self, x, y) (line 9) to perform an addition operation between two numerical values and
replace the storage value with the result of the operation (line 10). Figure 2b shows the translation
in Michelson resulting from the SmartPy compiler. The structure of the Michelson smart contract
has three components: (i) an explicitly-typed parameter declaration for the input, (ii) an explicitly-
typed storage declaration for blockchain store locations, and (iii) a code declaration that defines
the sequence of bytecode instructions. Technically, the input is a single value that specifies the
data required for running the code. However, aggregate types, such as pair and or, allow one to
provide more than a single input value to the contract (see line 1).
As already mentioned, the execution of a Michelson contract is stack-based: instructions pop

and/or push values on a stack. In the Tezos blockchain, a smart contract execution request (invoca-
tion) specifies the address of the smart contract in the blockchain and its input.3 The execution
starts from a stack whose only element is the pair of the input and of the current value of the
storage of the contract.
Figure 3 shows an execution of add from Figure 2b, with input Pair(5,9), assuming that the

current value of the contract storage is 0: the initial stack contains only one element, that is,
Pair(Pair(5,9),0). Note that the user provides the input, while the blockchain protocol retrieves
the storage value from the blockchain state. The first instruction in this example, CAR, splits the
pair and projects it on its first component Pair(5,9) (the input), which gets pushed on the stack
instead: the current storage value is discarded. The subsequent UNPAIR instruction decomposes
Pair(5,9) into its two components 5 and 9, that pushes on the stack instead. The ADD instruction
computes their sum (14), that gets pushed on the stack instead. The NIL instruction pushes an
empty list of operations to perform at the end of the execution and the final PAIR instruction boxes
the list and the result into a pair. That pair is the result of the execution. The blockchain protocol
will take its second component (14) and store it in the storage of the contract, for future use.

3 BLOCKCHAIN SOFTWARE VERIFICATION
Code verification can be applied from the very beginning of the implementation of the code. For
blockchain software, it is particularly important to apply it before code deployment in blockchain,
that is, before the code becomes immutable and difficult to patch. According to Chess et al. [9], the
most used approach for finding bugs is dynamic testing, that executes the software and compares
its output with the expected result. However, dynamic testing has drawbacks. The creation of test
cases is not trivial and can require a lot of effort, as developers need to compute the expected
results on each input case. Namely, unit testing verifies small portions of code (its units) over
3https://tezos.gitlab.io/michelson-reference/#execution
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Program

Approximation

Approximation

Program

Property Property

Over-Approximation Under-Approximation

Fig. 4. Approximation schema.

normal input or cornercases that could generate errors. Testing can observe only a finite set of
finite program executions [50, Chapt. 1.4.1]. Hence, dynamic testing can only show the presence of
bugs, never their absence [15, Part I, Chapt. 3]. In addition, dynamic testing can only be applied
from an advanced stage of development as it needs to be executed, increasing the cost of bug fixing
in case of multiple bugs.

A complementary approach to dynamic testing is static analysis, that automatically verifies the
properties of computer programs before their execution [50]. This reduces the cost, for developers,
of bug fixing, giving them the chance to fix bugs and code smells at an early stage [9]. Therefore,
for full code coverage and to prove or refute a code property, such as in the case of untrusted
token transfers that will be consider in this article, it is necessary to use formal methods based on
mathematical frameworks, such as abstract interpretation [12].
According to Cousot [11, Chapt. 1.2], abstract interpretation [12, 13] is a unifying theory of

formal methods that proposes a general methodology for proving the correctness of computing
systems. In static program analysis, abstract interpretation is used to approximate the concrete
behavior of programs (their concrete semantics) with an abstract behavior (their abstract semantics).
It also formalizes the intuition that semantics are more or less precise depending on the abstraction
level. The idea behind abstract interpretation is that reasoning on the abstract properties implies
some reasoning on the concrete ones. The abstraction is a necessary step to perform analyses that
detect otherwise undecidable properties [49], that is, abstractions trade precision for decidability.

Abstract interpretation allows one to formalize a notion of soundness. A static analyzer is sound
with respect to a program and a property of interest when it considers all possible program
executions and is thus able to give definite guarantees on the property. Thus, if it does not issue
any alarm, the property is guaranteed to hold for every possible execution. In other words, sound
analyzers have no false negatives (situations when the property holds in at least one concrete
execution, but the analyzer does not detect it and no alarm is issued). In particular, soundness is
achieved by using over-approximations (Figure 4), that can however create false positives (situations
when the property does not hold in any concrete execution but the analyzer conservatively assumes
that it might hold because it considers more executions than the concrete ones). According to
Meyer [29], it is generally better to use sound techniques, since false negatives can lead to critical
issues whose mitigation might be impracticable in some contexts, such as blockchain.

4 FROM SCRATCH TO MICHELSONLISA
Static analysis based on formal methods requires a non-trivial theoretical background and develop-
ment skills. In order to be able to design and implement a new analysis, it is necessary to construct
an infrastructure providing its basic building blocks (parser, control flow graph (CFG) representa-
tion [1], fixpoint algorithms, etc.). Therefore, the development of even a toy static analyzer from
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scratch is a big effort, unless a generic analysis infrastructure is already available, that can be used
to reduce to development effort.

This section reports our successful experience with the design and implementation of Michelson-
LiSA [39], a static analyzer for theMichelson language. In particular, it describes the challenges faced
in analyzing that domain-specific language, the technologies involved for quick implementation,
and the development timelines.

4.1 Challenges of Tezos Smart Contract Verification
As reported in Section 2, the development of smart contracts for the Tezos blockchain involves differ-
ent programming languages, both high and low-level. Switching from high to low-level languages
can imply a loss of information, making it difficult to understand, reverse engineer, analyze, and
verify blockchain software. High-level languages typically feature compact instructions, types and
annotations. Instead, low-level languages have a restricted instruction set and make all operations
performed during the execution explicit, losing expressiveness and increasing code verbosity. In
addition, compilation problems occur when the semantics of some high-level instruction may not
be easily expressed in terms of low-level instructions.

In this scenario, an interesting case study for Tezos is SmartPy [52]. It is a framework that allows
one to program smart contracts at high-level, in Python. However, Python is a general-purpose
language with thousands of APIs: many of them cannot be compiled into Michelson, due to its
domain restrictions. To overcome this problem, these functions are resolved at compile-time [53]
and the results are hardcoded in the compiled code. Nevertheless, this leads to other two problems.
The first and more immediate is that, while analyzing the Michelson bytecode, the usage of Python
APIs is not visible. The second is that this resolution is correct only if the API call actually returns
a constant, and the developer should check that. Let us explain this by means of the SmartPy smart
contract in Figure 5a, that gets initialized with a numerical parameter myPar1 through function
__init__ at line 6. This value can later be changed through function myEntryPoint at line 11.
The myEntryPoint function uses random.randint at line 13, a standard Python API that has no
transation into Michelson, since the latter has no instruction for generating random values, to
ensure deterministic execution [40, 41, 56]. But the SmartPy compiler compiles that code without a
single warning. Figure 5a shows the result: random.randint has been evaluated at compile-time
and its random return value (7) has been hardcoded in the bytecode, at line 8. When running the
Michelson code, it will not add a random value, as the Python programmer might naively expect,
but will add 7, for all executions. Moreover, the constant 7 will likely change at next compilation,
making the process non-deterministic.
In this case, code analysis at the high-level source code is not a viable choice. More generally,

according to Logozzo et al. [28], the analysis of low-level code provides different advantages: (i)
it is more faithful, as it analyzes the code that is actually executed (or closer to), (ii) it enables
the analysis of code when source code is not available (for instance, for smart contracts already
deployed in blockchain), (iii) it avoids redundant work that the compiler has already performed,
such as name resolution, type checking, template/generics instantiation, and (iv) the semantics of
high-level constructs is expanded by the compiler in the low-level code.

For these reasons, this paper focuses on the analysis of Michelson only.

4.2 Goals, Requirements and Technologies
A static analyzer such as MichelsonLiSA is composed of at least three main components (see
Figure 6):

(1) a parsing component that reads and interprets the code to analyze;
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1 import smartpy as sp

2 import random

3
4 # A class of contracts

5 class MyContract(sp.Contract):

6 def __init__(self , myPar1):

7 self.init(myPar1=myPar1)

8 # An entry point , i.e., a message receiver

9 # (contracts react to messages)

10 @sp.entry_point

11 def myEntryPoint(self):

12 self.data.myPar1 += random.randint (0,10)

(a) Python code

1 parameter (unit %myEntryPoint);

2 storage int;
3 code
4 {

5 CDR; # @storage

6 # == myEntryPoint ==

7 # self.data.myPar1 += 7 # @storage

8 PUSH int 7; # int : @storage

9 ADD; # int

10 NIL operation; # list operation : int

11 PAIR; # pair (list operation) int

12 };

(b) Michelson code

Fig. 5. An issue related to meta-programming from SmartPy.
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Fig. 6. MichelsonLiSA overall architecture.

(2) a program builder that creates a model of the program to analyze;
(3) an analysis engine, that analyzes and checks the program model.

Among these, the most complex is certainly the analysis engine, which requires non-trivial theoreti-
cal background and development skills. This paper relies on the analysis engine of LiSA [20, 33, 34],
a framework that provides a general infrastructure for static analysis and standard components for

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August XXXX.



344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

111:8 L. Olivieri, L. Negrini, V. Arceri, T. Jensen, F. Spoto

abstract interpretation. It is written in Java, a popular, platform-independent, enterprise language,
that supports a wide range of tools for software development (IDEs, test frameworks, monitoring
software, debugging environments). LiSA has been successfully applied to educational [20] as well
as industrial solutions [41].

LiSA facilitates the development of analyses based on formalmethods, but places some constraints,
since its program model uses a representation of extensible control flow graphs where every
instruction’s semantics is the composition of atomic operations, agnostic w.r.t. the syntax of the
source code. Moreover, LiSA is primarily designed for imperative and object-oriented languages
and its application to other languages must be investigated case by case. Next sections discuss the
three main components cited above and the impacts of adopting LiSA during the development of
the MichelsonLiSA analyzer.

4.3 Code Parsing
A parser reads the input code, checks if it complies to the language syntax, and returns a structured
representation of the parsed code, to be processed in a subsequent phase. The full grammar
of Michelson specifies its syntax.4 However, it currently lacks some syntactic sugar (such as
annotations, use of brackets, smart contract structure or macros) widely used in real-world Tezos
contracts. LiSA leaves the parsing logic to the user [33, Section 1.6]. Hence, we enriched that
grammar and implemented it5 in the ANTLR v4 format. ANTLR [45] is a popular tool that, starting
from a grammar, builds a lexer and a parser. The lexer reads the input code and produces a sequence
of strings called lexemes; the parser uses an 𝐿𝐿(∗) algorithm [46], with lexemes as input. If the code
complies with the grammar, the parser builds a structured abstract syntax tree (AST); otherwise,
it rejects the input code with a syntax error [11, Chapter 5] and stops. Our ANTLR grammar
is agnostic w.r.t. the implementation language of the lexer and parser (Java in our case): it can
therefore be reused in future projects written in other languages.

4.4 Program Builder
After parsing, a programmodel must be built. LiSAmodels code as a collection of CFGs (representing
the syntax of the input program) and provides rewriting rules of each CFG node into symbolic
expressions. These are an internal extensible language representing atomic semantic operations
(thus modeling the semantics of each instruction of the input program) [33, Section 1.6]. The ASTs
produced by the parser can be used as the base for building CFGs. However, according to [16], the
use of a stack makes it difficult to apply standard static analysis techniques. Moreover, LiSA is
designed for traditional high-level languages that are typically variable-based, while Michelson
is low-level and stack-based. Therefore, preliminary manipulations are necessary to provide a
program intermediate representation (IR) that matches the analysis engine.

4.4.1 Intermediate Representation.
MichelsonLiSA implements an IR based on static single-assignment (SSA), constructed by using
a symbolic stack to translate Michelson code into variable-based code. The algorithm is inspired
by BC2BIR [16] and Tezla [48]. The translation maps each Michelson instruction6 into a list
of MichelsonLiSA instructions (LiSA’s statements expressing the syntax and semantics of the
corresponding Michelson instruction), by using new fresh variables. It tracks, abstractly, the

4https://tezos.gitlab.io/active/michelson.html#full-grammar
5https://github.com/lisa-analyzer/michelson-lisa/tree/master/michelson-lisa/src/main/antlr
6https://tezos.gitlab.io/active/michelson.html#core-instructions
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parameter (pair int int);
storage int;
code {

CAR;
DUP;
UNPAIR;
COMPARE;
GT;
IF
{ # True branch

UNPAIR;
ADD;

}

{ # False branch

UNPAIR;
SUB;

}

NIL operation;
PAIR;

}

(a) Michelson code

v0 = parameter_storage ();

v1 = CAR(v0);
v2 = DUP(v1);
v3 = get_left(v2);

v4 = get_right(v2);

v5 = COMPARE(v3, v4);

v6 = GT(v5);
IF(v6)
{ # True branch

v7 = get_left(v1);

v8 = get_right(v1);

v9 = ADD(v7, v8);

}

{ # False branch

v10 = get_left(v1);

v11 = get_right(v1);

v12 = SUB(v10 , v11);

}

v13 = phi(v9, v12);

v14 = NIL(operation);
v15 = PAIR(v14 , v13);

(b) SSA form

Fig. 7. A Michelson smart contract and its translation into SSA form. The contract performs an addition if
the first component of the input pair is larger than the second one; otherwise, it performs a subtraction. The
result is encapsulated in a pair, consisting of an empty list of operations and of the new storage data value.

propagation of stack values through a symbolic stack of such variables.7 That is, stack elements
hold symbolic names, not their exact values. Figure 7 shows the translation of a Michelson contract
into SSA.
Instructions that push values on the stack are translated into variable assignments, with fresh

variables standing for stack elements, each assigned exactly once. Instructions that pop from the
stack take as parameter the variables corresponding to the elements they pop. Some instructions
can be both producers and consumers. Figure 8 shows an example of translation in SSA for some
common instructions. PUSH <type> <data> pushes a constant of the declared type: it is translated
with a fresh new variable that gets assigned to a constant of a declared type. SUB consumes its
two operands from the stack and pushes their difference instead: it is translated as a function that
receives the operands as arguments and yields their difference. DROP pops and discards the top of
the stack: it is translated with a function with no return value. PAIR consumes the two topmost
stack elements, and packs them into a pair that pushes on the stack instead: it is translated as a
function with two arguments, that yields the pair. UNPAIR pops a pair, splits it, and pushes its two
components instead: it is translated with two functions, that select the two components and store
them into fresh new variables.
Some Michelson stack-modifying instructions perform relatively complex stack operations.

Namely, SWAP exchanges the topmost two elements of the stack; DIG n shifts the stack element
at depth n into the top of the stack, while DUG n does the converse. These instructions can be
translated into SSA. Figure 9 shows an example for DIG 2 (the position of the elements starts at 0,
which is the topmost element).

7https://github.com/lisa-analyzer/michelson-lisa/tree/master/michelson-lisa/src/main/java/it/unive/michelsonlisa/
frontend/visitors/MichelsonStack.java
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0: PUSH int 23;

1: PUSH int 13;

2: SUB;
3: DROP;
4: PUSH int 23;

5: PUSH int 13;

6: PAIR;
7: UNPAIR;
8:

(a) Source code

0: []

1: [23]

2: [23 ,13]

3: [-10]

4: []

5: [23]

6: [23 ,13]

7: [Pair (13 ,23)]

8: [23, 13]

(b) Value stack

0: []

1: [v1]

2: [v1,v2]

3: [v3]

4: []

5: [v4]

6: [v4,v5]

7: [v6]

8: [v7, v8]

(c) Symbolic stack

0: v1 = PUSH(int , 23);

1: v2 = PUSH(int , 13);

2: v3 = SUB(v1,v2);
3: DROP(v3);
4: v4 = PUSH(int , 23);

5: v5 = PUSH(int , 13);

6: v6 = PAIR(v4,v5);
7: v7 = get_left(v6);

v8 = get_right(v6);

8:

(d) SSA form

Fig. 8. Example of transformation into SSA form.

0: PUSH nat 5;

1: PUSH nat 3;

2: PUSH nat 2;

3: DIG 2;

4: DROP;
5:

(a) Source code

0: []

1: [5]

2: [5, 3]

3: [5, 3, 2]

4: [3, 2, 5]

5: [3, 2]

(b) Value stack

0: []

1: [v1]

2: [v1, v2]

3: [v1, v2, v3]

4: [v2, v3, v1]

5: [v2, v3]

(c) Symbolic stack

0: v1 = PUSH(nat , 5);

1: v2 = PUSH(nat , 3);

2: v3 = PUSH(nat , 2);

3: DIG (2);
4: DROP(v1)
5:

(d) SSA form

Fig. 9. Michelson code using a DIG n instruction and its SSA form representation.

0: IF
1: { # True branch

2: PUSH int -1;

3: }

4: { # False branch

5: PUSH int 7;

6: }

7:

(a) Source code

0: [0 || 1]

1: []

2: []

3: [-1]

4: [-1]

5: []

6: [7],

7: [-1 || 7]

(b) Value stack

0: [v0]

1: []

2: []

3: [v1]

4: [v1]

5: []

6: [v1],

[v2]

7: [v3]

(c) Symbolic stack

0: IF(v0)
1: { # True branch

2: v1 = PUSH(int , -1);

3: }

4: { # False branch

5: v2 = PUSH(int , 7);

6: } v3 = phi(v1, v2) #

Junction point

7:

(d) SSA form

Fig. 10. Example of transformation of a conditional into SSA form, with a junction point. The 𝜙-function is
written as phi.

Michelson includes instructions for conditionals, such as IF, and for iteration, such as LOOP, both
leading to branches and junction points. For junctions, SSA reconciles distinct values of the same
variable, arising along different paths, through 𝜙-functions [14]. The idea is to translate instructions
separately along each path, using disjoint sets of variables, and then merge the variables that stand
for the same stack element along different paths at the junction point. Figure 10 shows an example.

Michelson has stack-protecting instructions, such as DIP n, that temporarily freeze the topmost
n elements of the stack, keeping them unaffected during the execution of a specified group of
subsequent instructions. Figure 11(a) shows a snippet of code that uses DIP 2 at line 3. There, the
stack holds [5, 3, 4] (from bottom to top), as reported in Figure 11(b). DIP 2 freezes its topmost
two elements (3 and 4) during the execution of the instructions specified inside curly braces. Namely,
PUSH nat 1 pushes 1 immediately below the frozen elements, instead of on top of the stack, leading
to the stack [5, 1, 3, 4]. Similarly, ADD pops the two topmost, unprotected stack elements 5 and
1 and pushes their sum immediately below the frozen elements. This behavior is reflected in the
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0: PUSH nat 5;

1: PUSH nat 3;

2: PUSH nat 4;

3: DIP 2 {

4: PUSH nat 1;

5: ADD;
6: }

7:

(a) Source code

0: []

1: [5]

2: [5, 3]

3: [5, 3, 4]

4: [5, (3, 4)]

5: [5, 1, (3, 4)]

6: [6, (3, 4)]

7: [6, 3, 4]

(b) Value stack

0: []

1: [v1]

2: [v1, v2]

3: [v1, v2, v3]

4: [v1, (v2, v3)]

5: [v1, v4, (v2 , v3)]

6: [v5, (v2, v3)]

7: [v5, v2, v3]

(c) Symbolic stack

0: v1 = PUSH(nat , 5);

1: v2 = PUSH(nat , 3);

2: v3 = PUSH(nat , 4);

3: DIP (2) {

4: v4 = PUSH(nat , 1);

5: v5 = ADD(v1, v4);

6: }

7:

(d) SSA form

Fig. 11. Michelson code that uses a DIP n instruction and its corresponding stack execution. Round brackets
highlight the protected area of the stack.

SSA translation (Figure 11(d)): PUSH nat 1 becomes v1 = PUSH(nat, 5), with v1 pushed on top
of the symbolic stack (Figure 11(c)). Similarly for the two subsequent PUSH instructions. At line 3,
the symbolic stack will be [v1, v2, v3] and v2 and v3 will become protected. Consequently,
at line 4, the PUSH instruction is translated into v4 = PUSH(nat, 1), with v4 placed below the
protected area of the symbolic stack, which becomes now [v1, v4, v2, v3]. The subsequent ADD
instruction operates on the unprotected elements v1 and v4 and gets translated into v5 = ADD(v1,
v4), with v5 pushed immediately below the protected values.

Michelson smart contracts interact with the context of Tezos where they execute. For instance,
at the beginning of their execution, the stack holds a pair of the input value and of the cur-
rent storage value. This must be made explicit in the SSA translation, as in Figure 7, with v0 =
parameter_storage(). Instrumentation is needed for data structures as well. Namely, Michelson
supports high-level data structures (sets, lists, maps, optionals) and has specific instructions to oper-
ate on them, such as ITER, LOOP_LEFT and IF_CONST. These typically push additional elements on
the stack. For instance, ITER consumes a collection from the stack and applies a set of instructions
to each of its elements. These get simulated in SSA by using assignments to additional variables.

4.4.2 CFG Builder.
At this point, a CFG builder can visit the IR and convert the elements into a CFG representation.
Thanks to this IR, the CFG needn’t be specific for a low-level language. Each node corresponds to
a statement implementation that expresses the semantics of Michelson through symbolic expres-
sions [33, Section 3.2.2], in order to be understandable by subsequent LiSA’s analyses. Symbolic
expressions can be considered as an internal language of LiSA to make the semantics of a node
generic. The connections between one statement and another are indicated as edges. Intuitively,
CFGs express the syntax of the program of interest, while symbolic expressions are used to con-
struct the semantics of CFGs by specifying the meaning of the statements in each CFG node. In
addition to the operations above, the builder expands the macros to analyze and handles each single
component separately. For instance, FAIL is a sequence of UNIT; FAILWITH to trigger a smart
contract failure: this is translated into two statements v = UNIT and FAILWITH(v), connected by
an edge. The first pushes a unit value8 on the stack and the second explicitly aborts the current
smart contract execution and exposes the top element of the stack as the exit value of the smart
contract execution.

The output of this phase is a collection of CFGs that represent, in SSA form, the Michelson source
program.

8https://tezos.gitlab.io/michelson-reference/#type-unit
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Task 1 2 3 4 5 6 7 8 9 10 11 12

Learning Michelson Language

Grammar

Parsing Phase

Testing and Bug Fixing of Code Parsing

SSA Form 

Symbolic Stack

MichelsonLiSA Instructions

Program Builder

Testing and Bug Fixing of Program Building

Analyses

Checkers

Final Testing and Bug Fixing

Fig. 12. Gantt chart of the MichelsonLiSA development. The timeline is divided into twelve working weeks.
Critical activities are shown in red, while non-critical activities are shown in blue.

4.4.3 Semantics of Domain Specific Operations.
Table 1 contains the current list of domain-specific operations of Michelson. Although they are
domain-specific, almost all of them, with the exception of CONTRACT (that can be seen as a cast), push
a value on the stack that depends on the run-time environment (current amount of cryptocurrency
in the transaction, current balance of a contract, current blockchain height, current address). In
static analysis, their semantics will express overapproximations of the potential run-time values,
that cannot be inferred statically. In general, MichelsonLiSA represents such operations as methods,
potentially with input parameters, that return a constant value with the return type of the operation.
The exact abstraction of that value will be handled at analysis time, since it has different abstractions,
depending on the kind of analysis. For instance, for numerical analysis, some operations could
return a specific numerical constant. Instead, for the UCCIs detection in Section 6.2, taintedness
levels will abstract the returned values, as for that of BALANCE, that gets abstracted as clean.

4.5 Analysis Engine
The resulting CFGs are a program model that complies with the LiSA engine, ready to be analyzed.
Given the program model and additional user settings, LiSA produces an entry and an exit state
for each node (that is, statement) in the CFGs, containing the information inferred by the analysis.
These can be subsequently sent to a checker. MichelsonLiSA allows the implementation of syntactic
and semantic checkers. A syntactic checker performs checks that are only based on syntax (for
instance, check if a variable is declared). A semantic checker exploits instead both the syntactic
structure of the program and the semantic information produced by LiSA’s analysis. In any case, it
is possible to save the information contained in the nodes, and generate alerts and warnings.

5 DEVELOPMENT ROADMAP
The development of a static analyzer based on abstract interpretation is an expensive task, with
respect to the time required and to the cost of the human resources needed to perform such
complex activity. An analyzer for a general-purpose language such as Java can require many years
of work and study to apply analyses at low-level (bytecode), supporting all language features and
runtimes [55]. In comparison, Michelson has a manageable number of instructions (around 100), its
memory model is simple and the language lacks advanced features (such as inheritance, interfaces,
pointers, objects, variable scoping, shadowing, concurrency). Furthermore, the use of LiSA has
considerably reduced the complexity of implementing MichelsonLiSA.

Figure 12 shows a Gantt chart of the tasks and timeline for the implementation of the first working
prototype of MichelsonLiSA, supporting an information flow analysis (taint analysis [19, 59]) and
a simple numerical analysis (sign analysis [12]). The activities were performed in a twelve weeks
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window (60 person-days). The implementation was carried out by a single senior Java developer
with prior knowledge of static analysis and abstract interpretation but not of the LiSA framework.

After a preliminary study of Michelson, the implementation started with the definition of the
language grammar, using ANTLR. This activity has been marked as critical, as it is the first
brick of the analyzer. Moreover, it has required several refinements, given the fragmented official
documentation. Subsequently, lexer and parser have been implemented and tested on real-world
smart contracts, checking the absence of any parse error. The activities related to program building
have been critical because they allowed us to produce the program model on which the analyses
are performed. The translator into SSA form required knowledge on symbolic stack computations,
that in turn rely on the push/pop behavior of each individual instruction. This resulted in the
definition and implementation of the semantics of each instruction and, when needed, in the design
of additional instrumentations (such as 𝜙-functions and multiple pushes of values on the stack).
This phase required the biggest effort, in terms of time. The architecture has been developed so that
it can be easily expanded in the future with new instructions. For instance, the logic of the symbolic
stack and of the translation into SSA has been separated from the implementation of the semantics
of the operations, defined in terms of symbolic expressions, by using two interfaces that model,
abstractly, the behavior of an instruction when it pushes9 or pops10 stack values. Regarding the
semantics of the symbolic expressions, LiSA natively provides some extensible classes for the most
common instructions (such as numerical addition and subtraction). Moreover, across the LiSA’s
repositories, it was possible to find several examples of the implementation of the instructions
semantics from which it has been possible to take inspiration, such as those from GoLiSA11 and
PyLiSA12. This simplified the implementation task, by focusing on domain-specific issues. Analyses
and checks have been developed by exploiting classes, interfaces and the engine already provided
by LiSA. Therefore, this part was the least problematic. It was only necessary to define abstract
domains and checks that issue the warnings. The work terminated with testing and bug fixing on
several examples of real-world code.

6 INFORMATION FLOW FOR UCCI DETECTION
Low-level code, such as that of Michelson, make blockchain software hard to understand, reverse
engineer, and manually investigate. This section builds on the analysis in [39] for the detection of
untrusted token transfers in Tezos smart contracts, discussing issues related to over-approximation
and detection of untrusted cross-contract invocations (UCCIs). It proposes a novel version of that
analysis, at different degrees of abstraction, to obtain different levels of over-approximation and
consequently present warnings by priority, thus facilitating manual investigation.

6.1 Untrusted Cross-Contract Invocation Problem
In the blockchain context, one of the first applications of smart contracts has been the exchange
of fungible and non-fungible tokens (crypto-currencies, tickets, documents, . . . ). Permissionless
blockchains such as Tezos are trustless environments composed of untrusted peers, secured by
economic incentive. For this reason, a common functional requirement for smart contracts is to
avoid unexpected transfers of tokens, that might happen through UCCIs, to arbitrary and potentially

9https://github.com/lisa-analyzer/michelson-lisa/blob/master/michelson-lisa/src/main/java/it/unive/michelsonlisa/cfg/
statement/interfaces/StackProducer.java
10https://github.com/lisa-analyzer/michelson-lisa/blob/master/michelson-lisa/src/main/java/it/unive/michelsonlisa/cfg/
statement/interfaces/StackConsumer.java
11https://github.com/lisa-analyzer/go-lisa/tree/master/go-lisa/src/main/java/it/unive/golisa/cfg/expression
12https://github.com/lisa-analyzer/pylisa/tree/master/pylisa/src/main/java/it/unive/pylisa/cfg/expression
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Typing
Γ ⊢ TRANSFER_TOKENS :: 𝑡𝑦 : mutez : contract 𝑡𝑦 : 𝐴 ⇒ operation : 𝐴
Semantics
TRANSFER_TOKENS / 𝑑 : 𝑧 : 𝑐 : 𝑆 ⇒ transfer_tokens 𝑑 𝑧 𝑐 : 𝑆

Fig. 13. Rules of TRANSFER_TOKENS [25, 26].

TEZOS BLOCKCHAIN

AttackerBlockchain User

Malicious 
Contract

Contract

1) contract deployment

2) vulnerability scouting

3) contract deployment

4) exploit vulnerable TRANSFER_TOKEN

5) move asset

9.b) retrieve asset

9.a) asset release
8) request for asset retrieve or release

6) payment request (extortion)

7) payment

Fig. 14. Extortionware attack model exploiting UCCIs [7, 8].

untrusted peers. In terms of the Smart contract Weakness Classification (SWC) registry, these issues
can be classified as delegatecall to untrusted callee (SWC-112) [32].

Namely, cross-contract invocations (CCIs) are delegate calls to external contracts, thus allowing
smart contracts to execute the code of other contracts in blockchain. An example is for the exchange
of fungible and non-fungible tokens. In this regard, Michelson provides the TRANSFER_TOKENS
instruction (Figure 13) to withdraw tokens from the current contract balance and send them to a
peer’s account or to another contract. TRANSFER_TOKENS requires three parameters:

• the target contract 𝑐 to transfer tokens to, typed as contract 𝑡𝑦, where 𝑡𝑦 is the type of the
contract parameter;

• the tokens 𝑧 to transfer, typed as mutez, which is a specific type for manipulating tokens;
• the value parameter 𝑑 of the contract 𝑐 , that must have type 𝑡𝑦.

CCIs are useful, but their naive use might introduce UCCIs that a malicious agent can exploit
to inject arbitrary target values, that will be executed in blockchain, leading for instance to extor-
tionware attacks [7, 8]. UCCIs occur when the contract to call is parameterized with untrusted
input (that is, data from outside the blockchain). Users can provide any input, also anonymously.
In Michelson, input and current storage value are implicitly pushed onto the stack at the beginning
of each smart contract execution. Hence, an UCCI may happen whenever one of them is used as
target contract of a TRANSFER_TOKENS.
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1 import smartpy as sp

2
3 @sp.module

4 def main():

5 class Proxy(sp.Contract):

6 def __init__(self , owner):

7 self.data.owner = owner

8
9 @sp.entrypoint

10 def forward(self , callee):

11 sp.transfer ((), sp.balance , callee)

(a) Python code

1 parameter (contract unit);
2 storage address;
3 code
4 {

5 UNPAIR;
6 NIL operation;
7 SWAP;
8 BALANCE;
9 UNIT;
10 TRANSFER_TOKENS;
11 CONS;
12 PAIR;
13 }

(b) Michelson code

Fig. 15. Tezos contract containing an UCCI.

Consider for instance the attack schema in Figure 14. A blockchain user might naively deploy a
contract containing a vulnerable TRANSFER_TOKENS instruction and use it to handle assets. After
contract deployment, its source code will remain immutable and exposed in the blockchain. An
attacker could discover the vulnerability of the contract and exploit it to steal the contract’s assets.
Specifically, the attacker could redirect the target contract of the TRANSFER_TOKENS instruction to
his own malicious contract, and subsequently demand a ransom or permanently take possession of
the stolen assets.
Figure 15 shows a concrete example of UCCI, actually exploitable by an attacker. The contract

is a proof of concept of a proxy implementation, inspired by the SWC-112 samples in the SWC
registry [32]. In general, proxy contracts such as those using proxy upgrade patterns [42], are
managed by special users called contract admin or contract owner. In Figure 15, the proxy contract
allows one to set up a contract owner at initialization time (line 7 of Figure 15a) and to transfer
the cryptocurrency in the smart contract through function forward (line 11). Every user can call
forward, not just the owner, hence every user can provide the callee and transfer the crypto to it,
leading to an UCCI. A fix requires a conditional statement to guarantee that only the owner may
call forward (see [32]).

6.2 Taint Analysis for UCCIs Detection
Previous work [39] expressed the detection of UCCIs as a taintedness problem. Taint analysis is an
instance of information flow analysis [17, 51], that allows one to detect if untrusted information
flows, explicitly, from some sources into critical program points, called sinks. In this context, program
variables (denoted byV) are partitioned into tainted (denoted by T) and clean (denoted by C), where
V = T ∪ C and T ∩ C = ∅. The variables in T are those that may contain untrusted information,
while those in C do not contain tainted values across all possible program executions. The analysis
identifies flows of information (in the form of value propagations) from variables in T to variables
in C.

For UCCIs detection, sources are statements providing untrusted user input. For the speicific case
of Michelson, the untrusted input is on the stack at the beginning of the smart contract execution,
as a pair of the input value and of the current storage value. Since there is no real function or
instruction that pushes the input on the stack, MichelsonLiSA models the presence of such a
pair by always prefixing the code with a call to function parameter_storage(). To consider the
result of such function as tainted, parameter_storage() is considered as a source for the UCCI
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1 v0 = parameter_storage() ;

2 v1 = get_left( v0 );

3 v2 = get_right( v0 );

4 v3 = NIL();
5 SWAP();
6 v4 = BALANCE ();
7 v5 = UNIT();

8 v6 = TRANSFER_TOKENS(v5, v4, v2 );

9 v7 = CONS( v6 , v3);

10 v8 = PAIR( v7 , v1);

(a) Michelson IR in SSA form

v0 = parameter_storage();

T: v0

C:

v1 = get_left(v0);

T: V0, v1

C:

V3 = NIL();

T: v0, v1, v2

C: v3

SWAP()

T: v0, v1, v2

C: v3

v6 = TRANSFER_TOKENS(v5,v4,v2);

T: v0, v1, v2, v6

C: v3, v4, v5

...

v2 = get_right(v0);

T: v0, v1, v2

C:

SOURCE

SINK

v4 = BALANCE()

T: v0, v1, v2

C: v3, v4

v5 = UNIT()

T: v0, v1, v2

C: v3, v4, v5

(b) CFG containing information of taint analysis

Fig. 16. Tezos contract containing an UCCI.

analysis. Instead, sinks are statements performing CCIs. For Michelson, they are the parameters of
TRANSFER_TOKENS instructions.

6.2.1 Running Example.
During the analysis of the code in Figure 15b, MichelsonLiSA detects the explicit flow leading to an
UCCI and issues a true positive warning on the TRANSFER_TOKENS instruction. Figure 16a shows
the flow, whose source is highlighted with a blue box and whose sink is highlighted with a red
box. Tainted information is propagated in gray. Namely, the analysis begins after the computation
of the SSA form. It identifies sources and sinks at line 1 and line 8, respectively: Tainted data is
propagated from v0 = parameter_storage() to v2 = get_right(v0) at line 3. Then, at line 8
it reaches TRANSFER_TOKENS through v2. The program has assigned nil, the current balance of
the contract, and a unit value to v3, v4 and v5, respectively. These variables are clean since such
values are not related to the user input: they are constants or, in the case of BALANCE, they are a
value that is not controlled by the user.

At the end of taint analysis, MichelsonLiSA issues a warning at line 8 because the sink, that is,
the third parameter of TRANSFER_TOKENS, is tainted. Therefore, the user will be able to directly
identify the critical point of the program highlighted by the warning, inspect the CFG with the
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Analysis Exec. time Avg. time per file # Warnings
Taint UCCI 2h 32m 8s 9.12s 2834

Table 2. Taint analysis for UCCI detection in Michelson smart contracts.

analysis information produced by MichelsonLiSA (a simplified view is in Figure 16b), understand
the data propagation path and conclude that it is a true positive.

6.2.2 Experimental Results.
The goal of this experimental evaluation is to test applicability and performance of MichelsonLiSA,
for the detection of UCCIs on Tezos smart contracts. The chosen artifact set is the same used
in [39], i.e. 1000 Michelson smart contracts (770060 lines of code) containing the instruction
TRANSFER_TOKENS. They have been randomly retrieved from [47], a repository containing 6983
Michelson contracts coming from a Tezos testnet. This set has been chosen for its code diversity, in
terms of size and complexity, and for its many CCIs. The same would be difficult to retrieve from
the Tezos blockchain through its public APIs.

Experiments have been executed on a HP EliteBook 850 G4 equipped with an Intel Core i7-7500U
at 2,70/2,90 GHz and 16 GB of RAM memory, running Windows 10 Pro 64bit, with Oracle JDK
version 13 to run the analyzer.

Table 2 reports the results of the experimental evaluation. In terms of time, the analysis requires
less than nine seconds per smart contract, on average. The analysis issues warnings about 2834
cross-contract invocations distributed in 781 smart contracts.

6.2.3 Discussion.
In general, the precision of an analysis depends on its abstraction level, which is often inversely
related to its computational cost. In particular, traditional taint analysis only tracks binary in-
formation (taint/clean) across program variables. This makes the analysis scalable to software
of industrial size (between 100KLOCs and 1MLOCs) [22, 57]. Our taint analysis implementation
applies over-approximations to guarantee soundness. This means that clean variables definitely hold
trusted values, while tainted variables might contain untrusted values, being sound entiles false
positives, that must be disambiguated by manual investigation. However, manual investigation is
challenging. As Section 4.1 reports, Michelson is a low-level language and it is rather difficult to
reverse-engineer its code, where high-level information is lost after compilation. At the end of the
analysis, MichelsonLiSA provides an additional report containing the analyzed CFGs in various
formats (such as html and dot), with details about the computed abstractions. This allows one to
check, for each program point, which variables the analysis infers as tainted or clean. However, in
order to spot over-approximations and false positives by manual investigation, one should manually
recompute the entire execution stack for every single instruction and check if its execution might
lead to a tainted value or not, exploiting MichelsonLiSA’s report. This activity is time-consuming,
given the complexity of some contracts.

Consider for instance the code in Figure 17. Its untrusted input is used to index a map containing
hardcoded addresses. The analysis starts by propagating the parameter and storage inputs in v0
= parameter_storage(). The untrusted information of v0 flows into v1 = CAR(v0) and then
into v3 = GET(v1,v2). Given a key and a map, the instruction GET retrieves a value from the
map. Therefore, the input parameter is used to select a hardcoded address from a map. How-
ever, our analysis propagates the untrusted information to v3 because at least one of the two
variables in GET(v1,v2) is untrusted. Going forward, that untrusted information propagates to
v4 = extract_value(v3), v6 = CONTRACT(v4), and v7 = extract_value(v6). From there,
it flows into TRANSFER_TOKENS(v10,v9,v7), where the analysis issues a warning since v7 is
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1 parameter int ;

2 storage unit ;

3 code {

4 CAR ;

5 PUSH (map int address) {

6 Elt 0 "tz1KqT ... b7QbPE" ;

7 Elt 1 "tz2VGB ... S6rna5"

8 } ;

9 SWAP;
10 GET ;

11 IF_NONE { PUSH string "key not found" ;

FAILWITH }

12 {

13 CONTRACT unit ;

14 IF_NONE { PUSH string "invalid contract" ;

FAILWITH }{};

15 AMOUNT ;

16 UNIT ;

17 TRANSFER_TOKENS ;

18 NIL operation ;

19 SWAP;
20 CONS ;

21 UNIT ;

22 SWAP;
23 PAIR
24 }

25 }

(a) Michelson smart contract

v0 = parameter_storage ();

v1 = CAR(v0);
v2 = PUSH( map { 0 : "tz1KqT ... b7QbPE", "1

" : "tz2VGB ... S6rna5" });

v3 = GET(v1,v2);
IF v4 = extract_value(v3) is None {

v5 = PUSH ("key not found");

FAILWITH ();
}

v6 = CONTRACT(v4)
IF v7 = extract_value (v6) is None {

v8 = PUSH ("invalid contract");

}

v9 = AMOUNT ();
v10 = UNIT();
v11 = TRANSFER_TOKENS(v10 ,v9,v7);
v12 = NIL();
SWAP();
v13= CONS(v11 ,v12);
v14= UNIT();
SWAP();
v15=PAIR(v13 ,v14);

(b) Michelson IR in SSA form

Fig. 17. Smart contract that allows one to transfer an amount of tokens to an address that can be selected by
the input parameter among those contained in a hard-coded map.

untrusted. However, it is not very intuitive to label this as a false positive and spot the over-
approximation, given the reduced readability of low-level languages. Untrusted information origi-
nating from parameter_storage() at line 1 does not determine, explicitly, the target contract of
TRANSFER_TOKENS(v10,v9,v7) at line 17, that comes instead from a read-only map (declared at
line 5) containing two hardcoded contract addresses. Hence, the CCI transfers tokens to known
contracts, always, and is not untrusted.
Given the complexity of the low-level code under analysis, we could not manually investigate

all files and compute true positive and false positive rates. However, next section considers more
precise abstractions, to spot possible over-approximations and prioritize warnings, hence easing
manual investigation.

6.3 Taint Analysis with Three Levels
Taint analysis allows the analyzer to scale to software of industrial size. However, as shown by the
benchmark of [39] and as also empirically evident for popular blockchains such as Ethereum [38],
smart contracts are typically small (few hundreds/thousands of lines of code). Therefere, it becomes
possible to collect more than binary information during taintness propagation without incurring
into scalability issues. For instance, it is possible to design a taint analysis based on three sets of
variables: T, C and P, where V = T ∪ C ∪ P and T ∩ C = ∅, T ∩ P = ∅ and C ∩ P = ∅. The variables
in T are definitely tainted; those in C are definitely clean; those in P are possibly tainted (due to
over-approximation). In this way, the analyzer can issue warnings of different priority, when the
information that flows in a sink is tainted or possibly tainted.
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Analysis Exec. time Avg. time per file #T Warnings #PT Warnings
Taint 3-level UCCI 2h 49m 18s 10.16s 2045 789

Table 3. Taint analysis with three levels for UCCIs detection of Michelson smart contracts.

6.3.1 Experimental Results.
Table 3 reports the results of executing our three-levels taint analysis on the same benchmark used
in Section 6.2.2: #T Warnings is the number of warnings triggered in sinks where the information
was marked as tainted; #PT Warnings is the number of warnings triggered in sinks where the
information was marked as possibly tainted. The execution time is around ten seconds per smart
contract, on average. The analysis issues warnings about 2834 cross-contract invocations: 2045
are related to tainted information, while 789 are related to possibly tainted information. They are
distributed into 680 and 219 smart contracts, respectively (there are smart contracts that contains
both kinds of warnings).

6.3.2 Discussion.
The proposed analysis distinguishes when an explicit flow from an untrusted input to a transfer
token invocation definitely happens (when the parameter is tainted) or might happen (when the pa-
rameter is possibly tainted). The former are situations when there is a direct non-overapproximating
flow of information from source to sink. The latter, instead, models situations when either there
might be multiple execution paths leading to the sink with different taintedness, or when over-
approximation has been applied. This helps the user investigate the warnings, giving priority to
those that represent definite vulnerabilities.
Figure 18 shows simplified CFGs with analysis information produced by MichelsonLiSA for

the code in Figure 17. In general, the result of taint analysis is a set of warnings for potentially
vulnerable program points, with the indication of the sink parameter that is reached by tainted data.
Hence, manual investigation starts from the sinks. In Figure 18a, the only way for checking the
correctness of the warning is to reconstruct the flow, backwards from the sinks, because there is no
indication of possible overapproximations. In Figure 18b, instead, it is apparent where variables
are added to the set P: the user can check whether that is an overapproximation or not, without
investigating all flows backwards.

Comparing the experimental results of the two approaches to taint analysis, the three-levels one
detects around 27% of the total warnings as overapproximations. The analysis requires slightly
more time than traditional taint analysis, a second more, on average. This might seem negligible,
but is actually a 10% increase, on average. In industrial code analysis, this is a big difference in
terms of time, assuming that there are enough resources to handle the information collected by the
analysis. Instead, in the blockchain context, it is possible to design analyses that typically would
not apply to traditional software, hence opening new development scenarios.

6.3.3 Other limitations of Taint Analysis.
Information flow analysis understands how information flows inside a program during its execution.
Information flows can be of three different categories (see Figure 19):

• explicit flows are those when the information in variable x is explicitly transferred to y;
• implicit flows are those when the information in variable y implicitly depends on the
information in variable x; (for instance, an assignment guarded by x)

• side channels are observable properties of the execution that depend on the information in
variable x (for instance, the amount of computational resources consumed).
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v0 = parameter_storage();

T: v0

C:

v1 = CAR(v0);

T: v0, v1

C:

v2 = PUSH( map { 0 : "t...E", 

"1" : "t...5" });

T: v0, v1

C: v2

IF v4 = extract_value(v3) is 

None

T: v0, v1, v3,  v4

C: v2

v5 = PUSH ("key not found");

T: v0, v1, v3,  v4

C: v2, v5

FAILWITH()

T: v0, v1, v3,  v4

C: v2, v5

v6 = CONTRACT(v4)

T: v0, v1, v3,  v4, v6

C: v2

IF v7 = extract_value (v6) is 

None

T: v0, v1, v3,  v4, v6, v7

C: v2

v8 = PUSH ("invalid contract");

T: v0, v1, v3,  v4, v6, v7

C: v2, v5, v8

v9 = AMOUNT();

T: v0, v1, v3,  v4, v6, v7

C: v2, v5, v8, v9

v10 = UNIT();

T: v0, v1, v3,  v4, v6, v7

C: v2, v5, v8, v9, v10

v11 = TRANSFER_TOKENS(v10,v9,v7);

T: v0, v1, v3,  v4, v6, v7

C: v2, v5, v8, v9, v10

...

v3 = GET(v1,v2);

T: v0, v1, v3

C: v2

SOURCE

SINK

(a) CFG containing traditional taint analysis infor-
mation.

v0 = parameter_storage();

T: v0

C:

P:

v1 = CAR(v0);

T: v0, v1

C:

P:

v2 = PUSH( map { 0 : "t...E", 
"1" : "t...5" });

T: v0, v1

C: v2

P:

IF v4 = extract_value(v3) is 
None

T: v0, v1

C: v2

P: v3, v4

v5 = PUSH ("key not found");

T: v0, v1

C: v2, v5

M: v3, v4

FAILWITH()

T: v0, v1

C: v2, v5

P: v3,  v4

v6 = CONTRACT(v4)

T: v0, v1

C: v2

M: v3,  v4, v6

IF v7 = extract_value (v6) is 
None

T: v0, v1

C: v2

P: v3,  v4, v6, v7

v8 = PUSH ("invalid contract");

T: v0, v1

C: v2, v5, v8

P: v3,  v4, v6, v7

v9 = AMOUNT();

T: v0, v1

C: v2, v5, v8, v9

P: v3,  v4, v6, v7

v10 = UNIT();

T: v0, v1

C: v2, v5, v8, v9, v10

P: v3,  v4, v6, v7

v11 = TRANSFER_TOKENS(v10,v9,v7);
T: v0, v1

C: v2, v5, v8, v9, v10

P: v3,  v4, v6, v7

...

v3 = GET(v1,v2);

T: v0, v1

C: v2

P: v3

SINK

SOURCE

(b) CFG containing taint analysis information with
three levels.

Fig. 18. Simplified CFGs, as reported by MichelsonLiSA.

Taint analysis can only detect explicit flows. Nevertheless, it is a good compromise between
performance and quality of the results. Historically, static information flow analysis for security
focused on explicit flows in order to be cheaper and have fewer false positives. Implicit flows are
harder to explain and understand, and their use by attackers remains a theoretical possibility only.
Side channels are outside the scope of this paper, as information disclosure cannot introduce UCCIs.
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1 var x,y

2 y = x

(a)

1 var x,y

2 if x == true:
3 y = 3

4 else:
5 y = 42

(b)

1 var x,y

2 if x == 1:

3 (* time -consuming work *)

4 y = 0

(c)

Fig. 19. Example of (a) explicit, (b) implicit, and (c) side channel flows, where h and l represent secret and
public variables, respectively.

7 RELATEDWORK
This section is divided in two parts. The first part presents related work about other analyzers
and frameworks for the design and implementation of new static analyses for smart contracts.
This first comparison does not consider the specific analyses that have been implemented for each
analyzer and framework, but the structure and domain of application of such tools only. Fistly, the
specific analyses are not relevant in this comparison; secondly, the implemented analyses for each
framework are often not clarified in the description of the framework or tools.
The second part of this section instead reports other analyses that are somehow related to the

use of information flow for UCCIs detection, which is the new analysis introduced here.
Many smart contract verification tools have emerged since the dawn of blockchain technol-

ogy [58]. Most of them apply to Ethereum [2] since, historically, it was the first successful blockchain
to introduce a Turing-complete language for smart contracts. Regarding Tezos, it is a relatively
new blockchain, hence it does not boast a large coverage of verification tools. Mi-Cho-Coq [6],
ConCert [30], andWhylSon [4] allow one to verify the functional correctness of Michelson contracts
through proof assistants. They all rely on theorem proving, which requires formal specifications of
the expected behavior of the code, such as pre- or post-conditions. Therefore, unlike MichelsonLiSA,
their use is not fully automatic. The same holds for Helmholtz [36], that type-checks Michelson
smart contracts against a user-provided specification based on a type system, by using the Z3 solver.
Reis et al. [48] propose SoftCheck for data-flow analyses of Michelson code providing an IR called
Tezla that linearizes the stack into a store of variables. The approach is similar to ours, especially
regarding the IR form, but we followed the abstract interpretation approach instead. Bau et al. [5]
extends MOPSA [31] to perform static analyses for Michelson. MOPSA is an abstract interpretation
framework and the major alternative to LiSA. It is designed to compute fixpoints by induction on a
program’s syntax and considers a program as an extensible AST that initially contains the original
source code, but that can be syntactically and semantically rewritten during the analysis.
Regarding UCCIs detection, several techniques are applied for other blockchains. Contract-

Fuzzer [24] generates fuzzing inputs and defines test oracles to detect security vulnerabilities, in-
cluding problems related to UCCIs in Solidity. Mythril [43] bases the analysis on symbolic execution
and concrete execution techniques to discover vulnerabilities, including UCCIs. It combines static
execution with dynamic execution to improve path coverage and accuracy. SMARTSHIELD [61]
dynamically highlights state changes and alterations after CCIs. Wang et al. [60] propose a general
platform for defect detection in smart contracts, including UCCI issues. The platform analyzes
smart contracts and obtains the semantic description of corresponding functions and variables.
Hence, it generates assertions to detect the defects of smart contracts. However, as the authors
acknowledge, there are still some problems that need further research and improvement, especially
related to the construction of assertions, where human intervention is required.
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8 CONCLUSION
Smart contract verification is challenging. Every day new blockchains are born with new program-
ming languages that require formal verification tools to avoid bugs and critical vulnerabilities.
This paper describes how to implement and design from scratch an abstract interpretation-based
static analyzer for Tezos smart contracts, relying on LiSA. This is a useful resource that supports
developers, providing standard components for software verification and allowing one to reduce the
implementation time. Furthermore, this paper investigated the use of taint analysis with different
levels of abstraction for the detection of UCCIs. The results show, empirically, that it is possible
to use abstractions not normally applicable to traditional code, opening new opportunities for
the verification of smart contracts. Future work will develop other analyses and investigate other
ways to improve taint analysis results, such as the introduction of backflow reconstruction on taint
graphs [21]. Moreover, given the multi-language nature of LiSA [34], we will investigate blockchain
interoperability to design a cross-blockchain taint analysis, involving other LiSA analyzers such as
GoLiSA [40, 41].
Although this paper applies LiSA to Michelson smart contracts, the same technique can be

used, in principle, on other programming languages for smart contracts. For instance, the idea
of using information flow to identify UCCIs is not bound to Tezos in any way. However, the
specific technicalities will change from language to language. For instance, the preliminary SSA
transformation of Michelson code might not be useful for other programming languages. LiSA
reduces the overhead of implementing new static analyses, but taking care of such distinguishing
technical details still requires some effort and expertise.
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