
Information Flow Analysis for Detecting
Non-Determinism in Blockchain
Luca Olivieri #

University of Verona, Italy
Corvallis Srl, Padova, Italy

Luca Negrini #

Corvallis Srl, Padova, Italy

Vincenzo Arceri #

University of Parma, Italy
Fabio Tagliaferro #

CYS4 Srl, Florence, Italy

Pietro Ferrara #

Ca’ Foscari University of Venice, Italy
Agostino Cortesi #

Ca’ Foscari University of Venice, Italy

Fausto Spoto #

University of Verona, Italy

Abstract
A mandatory feature for blockchain software, such as smart contracts and decentralized applications,
is determinism. In fact, non-deterministic behaviors do not allow blockchain nodes to reach one
common consensual state or a deterministic response, which causes the blockchain to be forked,
stopped, or to deny services. While domain-specific languages are deterministic by design, general-
purpose languages widely used for the development of smart contracts such as Go, provide many
sources of non-determinism. However, not all non-deterministic behaviours are critical. In fact, only
those that affect the state or the response of the blockchain can cause problems, as other uses (for
example, logging) are only observable by the node that executes the application and not by others.
Therefore, some frameworks for blockchains, such as Hyperledger Fabric or Cosmos SDK, do not
prohibit the use of non-deterministic constructs but leave the programmer the burden of ensuring
that the blockchain application is deterministic. In this paper, we present a flow-based approach to
detect non-deterministic vulnerabilities which could compromise the blockchain. The analysis is
implemented in GoLiSA, a semantics-based static analyzer for Go applications. Our experimental
results show that GoLiSA is able to detect all vulnerabilities related to non-determinism on a
significant set of applications, with better results than other open-source analyzers for blockchain
software written in Go.
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1 Introduction

In the last decade, blockchain software has undergone a notable evolution. In 2008, Bitcoin [33]
introduced a Turing-incomplete low-level language to specify locking conditions that must
hold for a transaction to be accepted by the network [3]. In 2013, Ethereum [8, 4] provided a
Turing-complete bytecode where smart contract rules are enforced by the blockchain consensus.
The execution of the code takes place on the Ethereum Virtual Machine (EVM), resulting in
software identified as decentralized applications (DApps). EVM bytecode is supported by high-
level domain-specific languages (DSLs), such as Solidity and Vyper, that have been designed
from scratch for the purpose of being executed in the restricted environment of blockchain.
Subsequently, thanks to frameworks such as Hyperledger Fabric [2], Tendermint [6, 29], and
Cosmos SDK [30], general-purpose programming languages (GPLs) such as Go, Java and
JavaScript can also be used to develop smart contracts and DApps, with Go being the most
popular in industrial blockchains.

The popularity of GPLs for writing smart contracts and DApps is steadily increasing.
Their success is mostly due to the maturity of the languages themselves, directly resulting in
wide communities, consolidated tools (such as IDEs and debuggers), and most importantly a
pool of expert and knowledgeable developers that can write highly efficient smart contracts.
Yet, GPLs were not conceived solely for blockchain ecosystems: code that is harmless and
bug-free in other contexts may result in vulnerabilities and errors. Among these, one of
the most insidious is non-determinism. When the result of an operation on a blockchain
is non-deterministic, there is no guarantee that a common state can be reached by the
network’s nodes, possibly preventing it from reaching consensus. This can manifest, among
other possibilities, as transaction failures or denial of service. Nevertheless, not all instances
of non-determinism are intrinsically dangerous: logging the time of a transaction can result
in different timestamps appearing in each node’s logs, but it does not endanger consensus as
it is not observable by other nodes. In fact, non-deterministic instructions are problematic
only if they can affect the shared blockchain state.

As an example, consider the code in Figure 1, reporting an excerpt of the ValidateBasic
method from module x/authz (part of the Cosmos SDK versions 0.43.x and 0.44.{0,1}) and
affected by the vulnerability reported in CVE-2021-411351. The code is meant to fail the
validation of expired grants. Note that the guard at line 2 involves the local clock of nodes
(time.Now()) rather than leveraging the timestamp included in the Block header provided
by the Byzantine Fault Tolerant clock, that is agreed upon by the consensus. As reported in
the official Cosmos forum [12]:

Local clock times are subjective and thus non-deterministic. An attacker could craft
many Grants, with different but close expiration times (e.g., separated by a few seconds),
and try to exercise the granted functionality for all of them close to their expiration
time. It is likely in such a scenario that some nodes would consider a grant to have
expired while others would not, leading to a consensus halt.

The code was then fixed in version 0.44.2, but is still a clear example of a vulnerability arising
from non-deterministic constructs.

The problem of non-determinism in blockchain software is clearly felt by the communities
of the blockchain frameworks treated in this paper. As a representative example, the
Tendermint Core documentation [27], while discussing non-determinism, reports:

1 https://nvd.nist.gov/vuln/detail/CVE-2021-41135.

https://nvd.nist.gov/vuln/detail/CVE-2021-41135
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1 func (g Grant ) ValidateBasic () error {
2 if g. Expiration .Unix () < time.Now (). Unix () {
3 return sdkerrors .Wrap( ErrInvalidExpirationTime , "Time can ’t be in the past")
4 }
5 // [...]
6 }

Figure 1 Cosmos SDK code affected by CVE-2021-41135.

While programmers can avoid non-determinism by being careful, it is also possible
to create a special linter or static analyzer for each language to check for determinism.
In the future we may work with partners to create such tools.

Paper contribution

This paper presents a software verification approach based on static analysis for the detection
of non-deterministic vulnerabilities in blockchain ecosystems, covering the most popular
frameworks for developing this kind of software, such as Hyperledger Fabric, Tendermint
Core and Cosmos SDK. We shift the classical focus that has been applied in this context
beyond the mere syntactic absence of non-deterministic constructs. In fact, we aim at
distinguishing harmful usages of non-determinism, that is, constructs affecting the blockchain
state and response, from harmless ones. As a consequence, the set of alarms issued to the
user sensibly shrinks, as shifting from a syntactic approach towards a semantic one leads to
a sensible reduction in false positives. We propose a semantic flow-based static analysis for
detecting flows from non-deterministic constructs to blockchain state modifiers and response
builders. The choice of a flow-based analysis seems natural when the problem is phrased
as “is there execution where a non-deterministic value affects the blockchain state or the
contract’s response?”. We thus exploit the well-consolidated literature in this area to adopt
scalable solutions that soundly over-approximate all program executions.

We provide a static analyzer implementing our approach: GoLiSA2, a sound static analyzer
based on abstract interpretation [10] for Go applications. Intuitively, we use our analyzer’s
fixpoint engine to mark all program variables (local variables, objects’ fields, . . . ) that can
contain values affected, directly or indirectly, by a non-deterministic construct or computation.
Specifically, we can perform a shallower analysis detecting only explicit flows using Taint
analysis [43, 14], where non-deterministic constructs and blockchain state modifiers are
modeled as sources and sinks, respectively. Alternatively, we can perform a deeper analysis
able to also detect implicit flows by means of the Non-interference analysis [24, 25], where
non-deterministic constructs and blockchain state modifiers are instead modeled as low and
high variables, respectively. Both solutions are implemented in GoLiSA, whose analysis
starts by syntactically visiting the input application to annotate all sources and sinks. The
annotations are dynamically generated depending on the kind of application of interest (i.e.,
Hyperledger Fabric, Cosmos SDK, or Tendermint Core). Since there is no predefined set
of sources in the target program, both Taint analysis and Non-interference are parametric:
they consider as harmful (i.e., tainted or low integrity, depending on the analysis that is to
be executed) only variables that are annotated as sources. The fixpoint engine then takes
care of propagating values coming from sources on the entirety of the program, exploiting
our analyses implementations. After the fixpoint converges, a mapping stating if each
program variable is the result of a non-deterministic computation is available at each program

2 https://github.com/lisa-analyzer/go-lisa
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point. These are then used by our non-deterministic semantic checkers, that visit the whole
application searching for statements annotated with the sink annotation. Whenever one is
found, the mappings are used to determine if the values used as parameters of the call are
critical or, in the case of Non-interference, if the call happens on a critical state.

Our approach, as highlighted by our evaluation, shows a significant decrease of false
positives on real-world blockchain applications compared to other analyzers for blockchain
non-determinism. The solution has been experimented on a benchmark of more than 600
real-world blockchain programs written in Go. These show that GoLiSA is able to perform the
analysis on the totality of smart contracts in this significant benchmark, and to successfully
report their non-determinism vulnerabilities.

The analyses are then evaluated in terms of precision of the results (true positive, false
positive, and false negative alarms). Based on these criteria, GoLiSA outperforms existing
open-source static analyzers for Go blockchain software. Moreover, the evaluation shows that
the execution time of the analyses is not impractical for real use cases.

To the best of our knowledge, GoLiSA is the first sound semantic-based static analyzer
for blockchain software able to precisely detect critical non-determinism behaviors while
scaling to real-world programs.

Summarizing, our contribution is threefold, as we provide:

a detailed investigation on the sources and the sinks that lead to non-determinism issues
in the most popular blockchain frameworks;

a flow-based static analysis for the detection of critical non-determinism behaviors, with
two instantiations exploiting different formalizations;

an open-source sound static analyzer for detecting critical non-deterministic behaviors in
blockchain software written in Go.

Paper structure

Sect. 2 reports an overview about blockchain software using Go and the most popular
frameworks to develop it. Sect. 3 discusses the problem of non-deterministic behavior in
blockchain context. After reporting an overview on information flow analyses, Sect. 4 presents
our core contribution for detecting non-deterministic behavior in blockchain software, that
relies on GoLiSA. Sect. 5 reports our experimental results. Sect. 6 discusses the related work.
Finally, Sect. 7 concludes the paper.

2 Preliminaries: Go and Blockchain

Go (https://golang.org) is a statically typed, compiled, open-source, and general-purpose
high-level programming language designed by Google to speed up software development,
and that is appreciated for its cross-compilation feature. Its versatility and performance
contributed to its diffusion in the blockchain environment: popular frameworks such as the
Hyperledger Fabric3, Tendermint4 and the Cosmos SDK5 are written in Go. These rely on
Go to develop efficient smart contracts and DApps, exploiting its high performances.

https://golang.org
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Figure 2 The world state database of Hyperledger Fabric.
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Figure 3 Cosmos SDK architecture.

2.1 Blockchain Environments
Hyperledger Fabric (HF) is a permissioned blockchain framework designed to be adopted
in enterprise contexts, supported by the Linux Foundation and other contributors such as
IBM, Cisco, and Intel. In HF, smart contracts and DApps are written in chaincode that
can be implemented in several GPLs such as Go, JavaScript, and Java. In most cases, the
chaincode interacts only with the world state database component of the ledger, and not
with the transaction log [26]. Go is currently the most popular language on GitHub related
to chaincode6, as Go smart contracts are the best performing ones [23].

Tendermint Core, recently rebranded as Ignite, is a platform for building blockchain
nodes, supporting both public and permissioned proof-of-stake (PoS) networks. It is a
Byzantine Fault Tolerant (BFT) middleware that separates the application logic from the
consensus and networking layers, allowing one to develop blockchain applications written in
any programming language, including Go, and replicate them on many machines [7].

Cosmos SDK is an open-source Go framework that eases the development of blockchain
applications while optimizing their execution by running them on Tendermint Core. As shown
in Figure 3, Cosmos SDK abstracts all the boilerplate code needed to set up a Tendermint

3 https://www.hyperledger.org/use/fabric
4 https://tendermint.com/
5 https://v1.cosmos.network/sdk
6 Querying the keyword chaincode on GitHub (https://github.com/search?q=chaincode) results in

more than 2100 repositories, about half of which are written in Go. Accessed: 01-12-2022.
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Core node, allowing for customized protocol configurations. The programming style follows
the object-capability model, where the security of subcomponents is imperative, especially
those belonging to the core library. Cosmos SDK is a framework for DApps, supporting
different functionalities through highly customizable modules (that can also manage smart
contracts).

2.2 Blockchain Consensus
Consensus protocols ensure the validity and authenticity of transactions performed in the
blockchain, as they check results of smart contracts or DApps computations through the
state of the network’s nodes. If a given number of nodes agree on the final state, consensus is
reached and the transaction is validated. Otherwise, it is discarded and the nodes proposing
spurious states are excluded from the network. When consensus cannot be reached, the
blockchain either forks or halts. Deterministic execution is thus required for software that
runs in a blockchain, as it guarantees that, when starting from a common state, the same
result is reached in any distinct blockchain node, avoiding inconsistencies among peers and
consensus failures. Nevertheless, GPLs provide several components that can explicitly lead
to non-determinism, such as (pseudo-)random number generators or external computations.
Furthermore, even methods that are explicitly sequential and deterministic pose a threat
when executed on different nodes, such as the time.Now() call from Figure 1. Despite
these threats, popular blockchain frameworks such as HF and Cosmos SDK do not enforce
particular restrictions on the usage of non-deterministic methods and components.

3 Non-Deterministic Behaviors in Blockchain Software: Sources and
Sinks

When trying to prevent non-deterministic vulnerabilities, a first solution is to limit the
expressiveness of the GPL by either black- or white-listing APIs and constructs. Consider
the Go snippets reported in Figure 4. Both fragments rely on the time API to retrieve
a timestamp from the host system. In general, the results of calls to the time API are
subjective to the node executing them, and they might lead to blockchain non-determinism
due to different system settings (e.g., time, date, time zones, . . . ) or due to nodes executing
the code at slightly different times. Specifically, Figure 4a shows a safe usage of the time API:
the timestamp is only used for logging with no observable consequences on the blockchain
state or the execution result. Instead, Figure 4b reports a problematic usage of the API,
as the timestamp is stored in the blockchain using PutState, an HF-specific function that
updates the shared network state. Since timestamps could differ on each node, this potentially
leads to inconsistent executions (i.e., different blockchain states or execution results), causing
transaction failure7.

It should thus be evident that identifying sources of non-determinism and preventing
their usage is not enough when we aim at discerning between harmful and harmless non-
deterministic constructs. In fact, one should also recognize how these are used, determining if
they can influence the shared blockchain state. In the rest of this section we discuss, for each
blockchain framework presented in Section 2, (i) the constructs that generate potentially
harmful non-determinism (that is, sources of non-deterministic values), and (ii) the blockchain

7 In this case, the GetTxTimestamp method from the HF API should have been used instead of
time.Now.
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1 func transfer (from , to Address , value int64 , stub *shim. ChaincodeStub ) {
2 start := time.Now ()
3 // ... transfer operations that takes some milliseconds ...
4 elapsed := time.Now (). Sub( start )
5 log. Println ("Time elapsed for the transfer operations : ", elapsed )
6 }

(a) Example of safe use of the time API.

1 func transfer (from , to Address , value int64 , stub *shim. ChaincodeStub ) {
2 t := time.Now ()
3 // ... transfer operations ...
4 err := shim. PutState (" transaction -time", t)
5 // ... other operations ...
6 }

(b) Example of issue of non-determinism with the time API.

Figure 4 Examples of harmless and harmful non-determinism in blockchain.

state modifiers and response builders (i.e., statements that make a transaction succeed or fail),
namely sinks that are sensitive to non-determinism8. This will prepare the ground for the
core contribution of this paper: a static approach to detect critical usages of non-determinism
in blockchain software, reported in Section 4.

3.1 Sources of Non-Determinism
The sources of non-determinism can be logically split in two families, the first being related
to the combination of framework and GPL adopted to develop the software. This family
comprises a set of constructs and APIs allowed by the framework that may break the
consensus during the execution of smart contracts or DApps. In Go, these are:

iteration over maps that, being the iteration order unspecified9, is not guaranteed to be
deterministic;
parallelization and concurrency, that can lead to race conditions on shared resources,
thus creating non-determinism on the computed values;
global variables, that may change innately and cause inconsistencies to the results, since
they depend on the application state of a peer and not on that of the blockchain [32, 5].
random value generators, that can potentially be allowed in smart contracts [9] to employ
custom logic while being non-deterministic by-definition.

The second family instead involves statements related to the underlying environment,
such as file systems, operating systems, databases, and Internet connections. While these are
not intrinsically non-deterministic, they become dangerous when their result is expected to
be consistent on different environments. These comprise APIs handling:

file systems, as the program might rely on files that are not present on all nodes, as they
might have been deleted, edited, moved, or there might be insufficient disk space causing
any operation to fail;
operating systems (OS), since the blockchain might operate on various hosts and language
APIs could return different results on each OS (e.g., time and date methods could return
different values if nodes are not synchronized);

8 The complete list of sources and sinks of non-determinism is available at https://github.com/
lisa-analyzer/go-lisa/blob/master/go-lisa/sources-sinks.md.

9 https://golang.org/ref/spec#For_statements
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Table 1 Potential non-deterministic behaviors related to Go.

Level Category Package Statements/Methods
Framework/Language Map iteration - range on map

Parallelization/concurrency - go (Go routine), <- (channel)
Random number generation APIs math/rand, crypto/rand *
Global variables - -

Environment File system APIs io, embed, archive, compress *
OS APIs os, syscall, internal, time *
Database APIs database *
Internet APIs net *

1 func (s * SmartContract ) transaction ( APIstub shim. ChaincodeStubInterface ) sc. Response {
2
3 if rand.Int () % 2 == 0 {
4 return shim. Error ("Fail")
5 } else {
6 return shim. Success (nil)
7 }
8 }

Figure 5 Example of issue of non-determinism related to the blockchain response.

databases, where records might be deleted, edited, or contain different data;
Internet connections, as networking setup or errors could cause some addresses to be
unreachable on few nodes of the network.

Table 1 summarizes the instructions and libraries of Go10 that we considered as cases of
non-determinism, where ∗ represents the entirety of the package. For the sake of simplicity,
the table reports instructions and packages omitting the full signatures of each method.
Note that only few methods within those packages lead to non-deterministic behaviors: for
instance, most methods from package time handling dates and times do not pose a threat
in smart contracts and DApps, and are in fact quite common. However, operations such
as retrieving the current time of the OS (i.e., methods Since, Now, Until) are potentially
dangerous.

3.2 Sinks of Non-Determinism
Sinks of non-determinism comprise constructs and APIs with the ability of both modifying
the common state of the blockchain or having an impact on the response of blockchain
networks. While the former is inherently involved in consensus protocols, the execution
of code within the blockchain does not necessarily change the shared state (e.g., functions
that simply read a value). However, the execution may lead to non-deterministic responses,
compromising the consensus of the network, as in the simple example reported in Figure 5.
Table 2, where the Critical point column identifies what part of the API should not receive
non-deterministic values, summarizes the main instructions and components that we consider
as sinks for non-determinism.

3.2.1 Hyperledger Fabric APIs for Go
In HF, chaincode executes transaction proposals against world state data that may change its
state. Programmatically, interface ChaincodeStubInterface from the HF Go APIs enables
access and modification of the blockchain state. Table 2 reports the current components (as

10 The full list of Go APIs sources considered in our analyses is available at https://github.com/
lisa-analyzer/go-lisa/blob/master/go-lisa/src/main/resources/for-analysis/nondeterm_
sources.txt. The list consider API until Go version 1.17.

https://github.com/lisa-analyzer/go-lisa/blob/master/go-lisa/src/main/resources/for-analysis/nondeterm_sources.txt
https://github.com/lisa-analyzer/go-lisa/blob/master/go-lisa/src/main/resources/for-analysis/nondeterm_sources.txt
https://github.com/lisa-analyzer/go-lisa/blob/master/go-lisa/src/main/resources/for-analysis/nondeterm_sources.txt
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Table 2 Main sinks for blockchain software written in Go.

Framework Package Type/Interface Statements/Methods Critical point
HyperLedger Fabric shim ChaincodeStubInterface PutState parameters

DelState parameters
PutPrivateData parameters
DelPrivateData parameters
Success statement
Error statement

Tendermint Core abci/types Application ResponseBeginBlock instance returned
ResponseDeliverTx instance returned
ResponseEndBlock instance returned
ResponseCommit instance returned
ResponseCheckTx instance returned

Cosmos SDK types KVStore Set parameters
Delete parameters

kv, dbadapter, gaskv, iavl, Store Set parameters
listenkv, prefix, tracekv, Delete parameters
types/errors ABCIError statement

Redact statement
ResponseDeliverTx statement
ResponseCheckTx statement
WithType statement
Wrap statement
Wrapf statement

of version 2.4) involved in the data-write proposal. The semantics of these components does
not affect the blockchain state until the transaction is validated and successfully committed.
Hence, if these components lead to different results (i.e., changes to the shared state) due
to non-determinism, consensus will not validate the transaction and no new state will be
committed. Regarding the response statements, HF provides the Success and Error methods
to yield successful and failed transaction responses, respectively.

3.2.2 Tendermint Core APIs for Go
Tendermint Core is a middleware with no explicit access to application state by design,
enabling communication through the Application BlockChain Interface (ABCI11). Figure 6
depicts the consensus process used to validate and store a transaction using the ABCI
methods. As reported in the official documentation [27] of Tendermint Core v. 0.35.1, only
BeginBlock, DeliverTx, EndBlock, and Commit must be strictly deterministic to ensure
consensus. Although the logic of these methods is different, they possess similar structure:
they all accept a request and return a response (ResponseBeginBlock, ResponseDeliverTx,
ResponseEndBlock, ResponseCommit), with the latter that must be deterministic.

3.2.3 Cosmos SDK APIs
Cosmos SDK handles both the application and the blockchain state through the store12. At
a high level, the store is a set of key-value pairs used to store and retrieve data, implemented
by default as a multistore (i.e., a store of stores), as shown in Figure 7. The multistore
encapsulation enables modularity of the Cosmos SDK, as each module declares and manages

11 https://github.com/tendermint/tendermint/blob/7983f9cc36c31e140e46ae5cb00ed39f637ef283/
docs/introduction/what-is-tendermint.md#abci-overview.

12 https://github.com/cosmos/cosmos-sdk/blob/2b24afad075894dd1727d057f87e2be24238016f/
docs/core/store.md.
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Figure 6 ABCI methods and consensus flow.
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…
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Figure 7 Main store of Cosmos SDK.

its own subset of the state using specific keys. Keys are typically held by keepers, a Cosmos
SDK abstraction with the role of managing access to the multistore’s subset defined by each
module. The Store type is declared in several packages (e.g., kv, tracekv, gaskv, ival),
with all definitions implementing the KVStore interface. The latter provides common APIs
to access and modify the state of the blockchain using methods such as Set and Del. As for
responses, Cosmos provides several methods (such as ABCIError, Wrap, ResponseDeliverTx)
in package types/errors to return failed transaction responses.

4 Information Flow Analysis for Non-Determinism Detection

In this section we introduce and discuss our approach for detecting non-deterministic behaviors
in blockchain software. In particular, we consider non-determinism as critical only if a non-
deterministic value can affect the blockchain state, either directly (i.e., being stored inside
the state) or indirectly (e.g., guarding the execution of state updates). Any other usage of
non-determinism is considered safe, as it does not affect the blockchain state or response. As
such, when mentioning non-determinism in the remainder of the chapter, we implicitly refer
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1 var l, h
2 h := l

(a)

1 var l, h
2 if l = true then
3 h := 3
4 else
5 h := 42

(b)

1 var l, h
2 if h = 1 then
3 (* time - consuming work *)
4 l := 0

(c)

Figure 8 Example of (a) explicit, (b) implicit, and (c) side channel flows, where h and l represent
secret and public variables respectively.

to its critical version. We rely on information flow analysis for detecting values originating
from sources of non-determinism that can affect the state of the blockchain. We only focus
on static analyses, since they soundly over-approximate all possible behaviors of target
programs and can thus give guarantees about the absence of such behaviors. We instantiate
two types of analyses: a Taint analysis, able to capture the so-called explicit flows, and a
Non-interference analysis, that can also detect implicit flows.

4.1 An Overview on Information Flow
Information flow analyses [11, 38] address the problem of understanding how information

flows from one variable to another during a program’s execution. These analyses usually
partition the space of program variables into private (or secret) and public, with the latter
being accessible to – and in some cases also modifiable by – an external attacker. The goal of
these analyses is then to find program executions where information flows from one partition
to the other, that is, where values of variables from one partition can affect the values of
variables from the other one. Figure 8 reports examples13 of the three main types of flows,
namely:

explicit flow: when a secret variable is assigned to a value obtained starting from public
variables;
implicit flow: when an assignment to a secret variable is conditionally executed depending
on values of public variables;
side channel: where some observable properties of the execution, e.g., the amount of
computational resources used, depends on the values of some secret variables.

In general, the term source is traditionally used for variables holding values that one
wants to track along program executions, while sink is used to describe locations where
values coming from sources should not flow. Using this terminology, when the property of
interest ensures the integrity of secret variables, information flow analyses can be instantiated
using public variables as sources and private ones as sinks, exactly as in Fig. 8 and in the list
above. These are able to detect situations where (i) a possibly corrupted value provided by a
malicious attacker could be stored into variables whose content is supposed to be reliable, or
(ii) such a value governs the update to private variables. If, however, one wants to ensure the
confidentiality of secret variables, the same analyses can be recasted with private variables
acting as sources and public ones as sinks, thus searching for flows in the opposite direction.
The target of the analysis is then to find disclosures of private data to external entities.

In the context of non-deterministic behaviors in blockchain environments, information
flow analyses can be used to detect when non-deterministic values end up or affect the
blockchain’s state, thus checking the integrity of that state w.r.t. non-deterministic values.

13 https://en.wikipedia.org/wiki/Information_flow_(information_theory).
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As such, we are interested in information flowing from public to private variables, and
we will use sources to identify ones that are initialized to non-deterministic values and
sinks to identify all variables that have an effect on the blockchain’s state. Moreover, we
will focus on explicit and implicit flows. In fact, side channels are typically studied to
detect secret information leaking through, for instance, execution time, thus violating the
confidentiality of that information instead of its integrity. On the other hand, explicit and
implicit flows identify non-deterministic values that are either used to update the blockchain’s
state or a transaction’s result, or that govern their execution. As a concrete example, recall
the code from Figure 1: the vulnerability presented there is an implicit flow since the
blockchain’s state is not directly updated with non-deterministic values, but the execution of
the update (i.e., the return statement) is conditional to some non-deterministic value (i.e.,
g.Expiration.Unix() < time.Now().Unix()).

In the following, we introduce two well-established information flow analyses that we will
use for non-determinism detection.

4.1.1 Non-Interference

Non-interference [24, 25] is a notion of security capturing the idea that if computations over
private information are independent from public information, then no leakage of the former
can happen. In simple terms, after partitioning the space of inputs of a program P into low
(private or secret, denoted by L), and high (public or available to anyone, denoted by H),
Non-interference is satisfied if changes in the high input do not affect the observable (i.e.,
low) output of the program:

∀iL ∈ L, ∀iH, i′
H ∈ H . P(iL, iH)L = P(iL, i′

H)L

This notion is often instantiated in language-based security by partitioning the space of
program variables between L and H, and finding instances of explicit or implicit flows between
these partitions. Such analysis computes, for each program point, a mapping from variables
to the information level they hold (low or high), while also keeping track of an execution state
depending on the information level of the Boolean conditions that guard the program point.
Violations of Non-interference for integrity can then be detected whenever an assignment to
a variable in H either (i) assigns a low value (that is, an expression involving variables in L),
or (ii) happens with a low execution state (that is, guarded by at least a Boolean condition
that involves variables in L), thus identifying both explicit and implicit flows. This can be
formalized as a type system for security [38].

4.1.2 Taint Analysis

Taint analysis [43, 14] is an instance of information flow analysis that can be seen as
simplification of Non-interference considering only explicit flows. In this context, variables
are partitioned into tainted and untainted (or clean), with the former representing variables
that can be tampered with by an attacker and the latter representing variables that should
not contain tainted values across all possible program executions. Roughly, Taint analysis
corresponds to the language-based Non-interference instantiation without the execution state,
thus unable to detect implicit flows. Taint has been instantiated to detect many defects
in real-world software, such as web-application vulnerabilities [16], privacy issues [22] (also
related to GDPR compliance [20]), and vulnerabilities of IoT software [17].
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Figure 9 GoLiSA overall execution.

4.2 The GoLiSA Static Analyzer
GoLiSA14 is an abstract interpretation [10] based static analyzer for Go applications, on
which we will rely for the rest of the paper for reasoning about blockchain software written
in Go. In this section, we present its architecture and its main feature. GoLiSA relies
on LiSA [19, 34] (Library for Static Analysis15), a Java library that provides a complete
infrastructure for the development of static analyzers based on abstract interpretation. In
particular, LiSA implements several standard components of abstract interpretation-based
analyzers, such as an extensible control-flow graph representation (CFG), a common analysis
framework for the development of new static analyses, and fixpoint algorithms on LiSA
CFGs.

The high-level analysis process of GoLiSA is reported in Fig. 9. The analysis starts with
the Go front-end (a sub-component of GoLiSA) that compiles Go source code into LiSA
CFGs and defines the semantics, types and language-specific algorithms that implement the
Go execution model, capturing the peculiarities of Go in order to make them understandable
to LiSA (e.g., scoping and shadowing of variables16). These CFGs are then passed to LiSA,
that analyzes them in a generic language-independent fashion. Roughly, CFGs are passed
to an interprocedural analysis, a component that cooperates with a call graph to resolve
calls and compute their results. The interprocedural analysis computes fixpoints over CFGs
according to some implementation-specific logic (e.g., modularly, relying on call chains, ...).
Each individual fixpoint relies on language-specific analysis-independent semantics for CFG
nodes, that is directly provided by GoLiSA: each node is rewritten into a sequence of symbolic
expressions, modelling the effects that executing a high-level instruction has on the program
state through low-level atomic semantic operations. Each of these symbolic expressions is fed

14 Available at https://github.com/lisa-analyzer/go-lisa
15 LiSA project and documentation available at https://github.com/lisa-analyzer/lisa
16 https://go.dev/ref/spec#Declarations_and_scope
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to an abstract state [15], a combination of an abstract domain modelling the dynamic memory
of the program (heap domain, e.g., point-based heap analysis [1]) and one for tracking values
of program variables and memory locations (value domain, e.g., intervals [10]). The abstract
state and its underlying domains compute a sound over-approximation of the expression’s
effects according to their specific logic, and this can later be exploited by semantic checks to
issue warnings that are of interest for the user. All analysis components (interprocedural
analysis, call graph, abstract state, heap domain, value domain and semantic checks) are
part of LiSA’s configuration, enabling modular composition and implementation of each
component.

4.3 GoLiSA for Non-Deterministic Behaviors Detection
At this point, we are in position to instantiate GoLiSA for the static detection of non-
deterministic behaviors in blockchain software. The core idea of our solution is to track the
values generated by the hotspots identified in Section 3.1 during the execution of a program
using either Taint analysis or Non-interference. Similarly, after the analysis completes, we
can use a semantic checker to exploit the abstract information provided by the domain of
choice, checking if any of the sinks specified in Section 3.2 receives one such non-deterministic
value as parameter or, in the case of Non-interference, if the sink is found in a low execution
state.

GoLiSA’s analysis is instantiated as follows:
Taint analysis and Non-interference are implemented as value domains, both of them
being non-relational domains (i.e., mapping from variables to abstract values – taintedness
and integrity level respectively – with no relations between different variables), with
Non-interference keeping track of the abstractions for each guard;
field-insensitive program point-based heap domain (Section 8.3.4 of [37]), where any
concrete heap location allocated at a specific program point is abstracted to a single
abstract heap identifier;
context-sensitive [39, 28] interprocedural analysis, abstracting full call-chain results until
a recursion is found;
runtime types-based call graph, using the runtime types of call receivers to determine
their targets;
two semantic checkers, for Taint analysis and Non-interference, that scan the code in
search for sinks, checking the taintedness or integrity level of each sink.

The analysis begins by visiting the input program to detect the statements annotated as
sources and propagating the information from them. The analyses produce, for each program
point, a mapping stating if each variable is the result of a non-deterministic computation.
These mappings are then used by our semantic checkers, that visit the program in search for
statements annotated as sinks. When one is found, the mappings are used to determine if
values used as parameters of the call are critical or, in the case of Non-interference, if the
call happens on a critical state. The choice of the analysis to run (and thus of the checker to
execute) is left to the user.

For instance, let us consider the fragment reported in Figure 4a. At line 5, despite
variable elapsed being marked as tainted, no warning is raised by GoLiSA regardless of the
chosen analysis, as it does not reach any sensitive sink. Instead, analyzing the fragment from
Figure 4b results in the following alarm:
The value passed for the 2nd parameter of this call is tainted ,
and it reaches the sink at parameter ’value ’

The warning is issued with both analyses, since variable t is marked as tainted and reaches a
blockchain state modifier through an explicit flow.
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Consider now the example reported in Figure 1. Here, no explicit flow happens at
line 3, that contains the blockchain state modifier Wrap, but its execution depends on the
non-deterministic value used in the condition at line 2, that is, time.Now().Unix(). As this
is an implicit flow, the Taint analysis is not able the detect it. GoLiSA will however discover
it with Non-interference, raising the following alarm:
The execution of this call is guarded by a tainted condition ,
resulting in an implicit flow

4.4 Detection of Sources and Sinks in GoLiSA
To exploit information flow analyses, the analyzer must know which are the sources and sinks
of the program. In this regard, GoLiSA provides a solution based on annotations, marking
the corresponding statements as sources and sinks. In the following, we describe how GoLiSA
annotates sources (Table 1) and sinks (Table 2) depending on their types.

Methods and functions

As shown in Tables 1 and 2, all sinks and several sources correspond to functions and
methods of APIs from either the Go runtime or the blockchain frameworks. GoLiSA contains
a list of the signature of these functions and methods and it automatically annotates the
corresponding calls in the program by syntactically matching them. While we rely on manual
annotations, they can also be generated using automated tools (e.g., Sarl [18]). For instance,
when GoLiSA iterates over the following snippet, it is able to discover the call to time.Now,
that gets annotated as source, and the one to PutState, whose parameters get annotated as
sinks:

1 key := "key"
2 tm := time.Now ()
3 stub. PutState (key , [] byte(tm ))

Then, the information flow analysis propagates taintedness from the return value of time.Now
to the second parameter of PutState, thus issuing an alarm at line 3.

Map iterations

To detect iterations over maps, one needs to reason about typing. GoLiSA exploits runtime
types inferred by the analysis to identify range statements happening over maps. If a map
iteration occurs, that is, if the object in a range statement is inferred to be a map, then
GoLiSA marks as sources the variables used to store keys and values of the map. Consider
as an example the following code snippet:

1 s := ""
2 kvs := map[ string ] string {"a": " hello ", "b": " world !"}
3 for k, v := range kvs {
4 s += v
5 }
6 stub. PutState ("key", [] byte(s))

While analyzing the code, range statements are checked for the types of their parameter.
GoLiSA annotates as sources both k and v, as kvs is inferred to be a map, while the sink
at line 6 is detected through already discussed annotations. Information flow analyses can
then propagate the taintedness from v to s, that in turn flows to the second parameter of
PutState, issuing an alarm at line 6.
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Global variables

GoLiSA syntactically annotates every global variable appearing in the program as a source
of non-determinism, as their value could be modified independently on each peer. For
instance, in the following code, the value of global variable glob could differ from peer to
peer depending on the number of times function inc has been executed. This can happen as
not all peers simulate the same transaction, for instance due to differences in the endorsement
policy of each peer [32].

1 var glob string
2 func inc () {
3 glob += "a"
4 }
5 func (s * SmartContract ) transaction (stub shim. ChaincodeStubInterface ) sc. Response {
6 stub. PutState ("key", [] byte(glob ))
7 }

Before the analysis, GoLiSA iterates over all program components, annotating glob as a
source. The sink at line 6 is annotated as sink as previously discussed. Then, the information
flow analysis propagates taintedness from glob to the second parameter of the call to
PutState, raising an alarm at line 6.

Go routines

GoLiSA inspects the code of Go routines, checking the scope of variables they use. If these are
defined outside the routine using them, they are effectively shared among threads, potentially
leading to race conditions or non-deterministic behaviors. Hence, GoLiSA annotates the
such variables as sources. As an example, the following snippet defines and invokes a simple
Go routine that modifies a variable defined in an enclosing scope:

1 s:= ""
2 go func (){
3 for i := 1; i <= 10000; i++ {
4 s += "0"
5 }
6 }
7 stub. PutState ("key", [] byte(s))

When GoLiSA finds the Go routine, it checks the scopes of each variable, inferring that s
is declared outside the routine itself. Hence, GoLiSA annotates s at line 1 as source, while
the sink at line 7 is annotated as previously discussed. Then, the information flow analysis
propagates taintedness from s to the second parameter of PutState, issuing an alarm at line
7 since the value of s depends how many times the Go routine has executed the loop body.

Go channels

Channels are pipes that connect concurrent Go routines. Operator <- allows interaction with
channels to retrieve a value from them, blocking until one is available. GoLiSA annotates as
sources the instructions reading values from channels, as the order in which these are written
is intrinsically non-deterministic. Consider the following example:

1 c := make(chan int)
2 go myroutine1 (c)
3 go myroutine2 (c)
4 x, y := <- c, <- c
5 stub. PutState ("key", [] byte(x))

GoLiSA iterates over the program searching for occurrences of the operator <- . It then
annotates variables x and y as sources, as they receive a value from channel c. The sink at
line 5 is detected as previously discussed. The information flow analysis can then propagate
taintedness from x to the second parameter of PutState, resulting in an alarm at line 5.
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5 Experimental Evaluation

In this section, we discuss the experimental evaluation of the information flow analyses
implemented in GoLiSA to detect non-determinism issues in real-world blockchain software.
First, we study them from a quantitative point of view, on a set of 651 real-world HF
smart contracts retrieved from public GitHub repositories. The evaluation focuses on the
HF framework since, to the best of our knowledge, it is the only framework supported by
several static analyzers detecting non-determinism issues. This will allow us to compare
GoLiSA against state-of-the-art static analyzers in this domain. Furthermore, HF is currently
the most popular and widespread blockchain framework among public GitHub repositories,
with most smart contracts written in Go. Nevertheless, GoLiSA provides support also for
detecting non-determinism behaviors for Cosmos SDK and Tendermint Core smart contracts
and DApps.17

We compare GoLiSA with two open-source static analyzers for chaincodes, namely Re-
viveˆCC and ChainCode Analyzer. The experiments show that GoLiSA produces more precise
results in detecting non-deterministic behaviors, outperforming existing static analyzers.

Then, we evaluate the quality of our results on two specific real-world applications, to show
how the static analyses discussed in Section 4 work and how the information is propagated
in smart contracts. In particular, we selected the first application from the HF benchmark,
while the second one is a Cosmos SDK application.18

All the experiments was performed on a HP EliteBook 850 G4 equipped with an Intel
Core i7-7500U at 2,70/2,90 GHz and 16 GB of RAM running Windows 10 Pro 64bit, Oracle
JDK version 13, and Go version 1.17.

5.1 Quantitative Evaluation
The experimental artifact set has been retrieved from 954 GitHub repositories, by querying
for the chaincode keyword, as smart contracts are called in HF, and selecting chaincodes
from unforked Go repositories only19, that include the Invoke and Init methods: these are
the transaction requests’ entry points for chaincodes.20 Then, we filtered out files unrelated
to smart contracts and removed chaincodes not analyzable due of failures either GoLiSA
or the tools discussed in Sect. 5.1.1. In particular, GoLiSA failures on such chaincodes are
due to current missing support of high-order functions, recursion, and C code invocation via
the built-in Go cmd/go package.21 This resulted in a benchmark consists of 651 chaincodes
only (∼167391 LoCs), that, from here on, we refer to as HF. Then, each chaincode has been
manually inspected before applying GoLiSA to search for critical non-deterministic behavior.
In particular, for each chaincode, we manually searched for sources of non-determinism (if
present) and checked if the result of the corresponding instructions could have an impact
(i.e., an update) on the blockchain global state or on the response. If so, we classified this
behaviour as critical/harmful. On the selected benchmark, we have found a total of 124
critical/harmful non-deterministic behaviours. In our evaluation, a warning raised by an

17 An industrial application of GoLiSA for detecting non-determinism in Cosmos SDK can be found
here [36].

18 The example reported in Figure 1 contains a snippet of code of this application
19 https://api.github.com/search/repositories?q=chaincode+fork:false+language:Go+archived:

false&sort=stars&order=desc. Accessed: 17-10-2022.
20 See https://pkg.go.dev/github.com/hyperledger/fabric-chaincode-go/shim.
21 We decided not to implement those standard features since this would have required a relevant effort to

support only a few more chaincodes.
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Table 3 Analysis evaluation.

Analysis #A #U ET AT #W #TP #FP #FN
Taint 68 583 2h:15m:03s 12.45s 173 118 55 7
Non-interference 69 582 2h:25m:18s 13.39s 195 124 71 0

analyzer has been classified as true positive (TP) if it was part of the 124 critical behaviours
mentioned above, and as false positive (FP) if not. All the critical behaviours, part of the
124 manually detected, for which there was no warning, have been marked as false negative
(FN).

Table 3 reports the results of the experimental evaluation of GoLiSA over the benchmark
HF, where #A is the number of affected chaincodes (i.e., chaincodes where at least a warning
was issued), #U is the number of unaffected chaincodes (i.e., chaincodes where no warning
was raised), ET is the total execution time, AT is the average execution time, #W is the
total number of warnings issued, #TP is the number of true positives among the raised
warnings, #FP is the number of false positives among the raised warnings, and #FN is the
number of false negatives. In terms of execution time, the analyses performed averagely in
around 15 seconds per chaincode. The experiments shows that Non-interference performs
better than Taint in terms of precision, being able to detect all the true positives contained
in HF, with a ratio of false positives less than 40%. This was expected since, as we have
already discussed in Section 4 and unlike Non-interference, Taint is only able to track explicit
information flows. In fact, the 7 false negatives (column #FN of Table 3) produced by Taint
correspond to implicit non-deterministic behaviors.

5.1.1 Comparison
We compared GoLiSA with the open-source static analyzers for Go chaincode described in
Section 6, namely ChainCode Analyzer and ReviveˆCC. Table 4 reports the comparison
between GoLiSA and these tools over the same benchmark HF discussed in Section 5.1.

The comparison shows that GoLiSA - Non-interference finds all the true issues contained
in the benchmark, achieving the best and most accurate result in terms of precision with a
36.41% false positives ratio. Instead, although it has some false negatives, GoLiSA - Taint is
the analysis with the lowest percentage of false positives with the 31.79% .

ReviveˆCC triggers 351 warnings out of which 77.49% are false positives. The only
non-deterministic behaviour not detected by ReviveˆCC (last column) is due to the fact that
it considers the ioutil.ReadFile API as safe, although reading a file should be considered
non-deterministic in the blockchain context. Finally, ChainCode Analyzer is more precise
w.r.t. ReviveˆCC, with 66.50% of false positives, but it has also the greatest number of false
negatives, failing to detect a huge number of critical non-deterministic behaviors. This can
be attributed to the fact that ChainCode Analyzer does not consider several APIs leading to
non-determinism as critical and it fails to soundly detect iteration over maps.

Note that the amount of true positives discovered by GoLiSA analyses differs from the
ones of other tools. In fact, GoLiSA is the only tool involved in our comparison that issues
warnings on sinks rather than sources. This translates to fewer alarms being issued whenever
values of multiple sources flow to the same sink (here, GoLiSA issues a single warning, while
other tools issue one for each source), and to more alarms being raised whenever the value of
a single source flows to multiple sinks (here instead, other tools issue a single warning, while
GoLiSA issues one for each sink).
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Table 4 Warnings triggered by the analyzers on HF.

Tools # W # TP # FP # FN
GoLiSA - Taint 173 118 55 7
GoLiSA - Non-interference 195 124 71 0
ChainCode Analyzer 203 68 135 53
ReviveˆCC 351 79 272 1

1 func (s * SmartContract ) registrarBoleto ( APIstub shim. ChaincodeStubInterface , args []
string ) sc. Response {

2 // [...]
3 objBoleto . CodigoBarra = strconv .Itoa (( rand.Intn (5) + 10000000 + // [...]
4 var notExpiredDate = time.Now ()
5 objBoleto . DataVencimento = notExpiredDate . Format (" 02/01/2006 ")
6 // [...]
7 boletoAsBytes , _ := json. Marshal ( objBoleto )
8 APIstub . PutState (args [0] , boletoAsBytes )
9 // [...]

10 }

Figure 10 Method registrarBoleto of boleto contract.

5.2 Qualitative Evaluation
5.2.1 Explicit Flow: the Boleto Contract
The boleto contract22, taken from HF, comes with a real non-determinism issue that can be
found with explicit flows, and that was also detected by other tools during the comparison of
Section 5.1.1. The boleto contract (Figure 10) seems to be a proof of concept application
handling tickets in an e-commerce store, with the method registrarBoleto used to register
a ticket.

Analyzing boleto, GoLiSA detects the explicit flow leading to a non-deterministic behavior
with both Taint and Non-interference. Method registrarBoleto contains two different
sources of non-determinism that directly flow into the same sink. The first source detected
by GoLiSA is the usage of the Random API to generate a barcode at line 3. Instead, the
second source is the usage of the OS API that retrieves the local machine’s time to set a
date at line 4. As values from both sources are used to update fields of objBoleto, the latter
is marked as tainted by the analysis, resulting in boletoAsBytes being tainted as well. As
reported in Table 2, PutState’s parameters are considered as sinks by GoLiSA’s analyses.
According to the official documentation of HF23, the PutState method does not affect the
ledger until the transaction is validated and successfully committed. However, a transaction
needs to produce the same results among different peers to be validated. Hence, as passing
non-deterministic values to PutState will cause the transaction to fail, GoLiSA raises a
warning on line 8.

5.2.2 Implicit Flow: Cosmos SDK v.43
Analyzing the code in Figure 1, GoLiSA is able to detect an implicit flow that leads
to a non-deterministic behavior, that can only be detected using Non-interference. The
ValidateBasic method of Cosmos SDK v. 0.43.x and v. 0.44.{0,1} was designed to validate

22 https://github.com/arthurmsouza/boleto/blob/master/boleto-chaincode/boleto.go
23 https://github.com/hyperledger/fabric-chaincode-go/blob/

1476cf1d3206f620db7eea12312c98669d39fa22/shim/interfaces.go.
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Figure 11 Simplified view of explicit flow computed by GoLiSA during the analysis of
registrarBoleto.

a grant to ensure it has not yet expired. In this case, the source detected by GoLiSA is
the OS API used to retrieve the local machine time involved in the expiration check of
the grant time at line 2 of Figure 1. By propagating the information, GoLiSA detects that
the expiration check governs the execution of return statement. Since the Wrap method is
annotated as a sink, GoLiSA triggers an alarm at line 3 of Figure 1 as the sink is contained
in a block whose guard depends on non-deterministic values.

5.3 Limits

Unlike some frameworks and GPLs used in other blockchains, frameworks targeted by this
paper are used to develop permissioned, and often private, blockchains, meaning that the
related software is not publicly available or released with open-source licenses. This is also
the reason why the benchmark HF crawled from GitHub consists of 651 chaincodes, a number
that is not comparable with smart contract benchmarks obtained investigating other (public
and permissioned) blockchains. For instance, [44] collects 3075 distinct smart contracts from
the Ethereum blockchain, resulting in a wider benchmark.

The proposed solution for detecting non-deterministic behaviors is fully static. It is well
known that static analysis is intrinsically conservative and may produce false positives. Even
if few have been raised by GoLiSA on the selected benchmark, one should expect more false
positives when applying our approach to arbitrary DApps.
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Figure 12 Simplified view of implicit flow computed by GoLiSA during the analysis of Figure 1.

6 Related Work

The non-determinism of smart contracts written in GPLs is a well-known issue [32, 45].
Frameworks such as Takamaka [41, 42] enforce determinism adopting a conservative approach
that limits the set of instructions and APIs of the target language, avoiding unsafe statements
that might lead to non-deterministic behaviors through white-listing fully deterministic APIs.
This approach ensures safe development while preventing that API extensions coming with
new language versions can bypass the check. However, it also severely limits the exploitable
features of the GPL. On the other hand, black-listing undesired APIs is a much harder
approach to maintain, but it seems the most widespread technique in Go analyzers. For
instance, ChainCode Analyzer [31] and ReviveˆCC [40] detect mainly black-listed imports
related non-deterministic APIs using a syntactical approach. Besides, they can detect non-
deterministic map iterations by AST traversal with minimal syntactic reasoning. Signature of
invoked functions can also be black-listed instead of imports [32]. These tools and frameworks
inherently limit API usage, sensibly reducing the benefits of adopting a GPL even when the
code poses no harm to the blockchain. The problem of detecting non-determinism has also
been covered for parallel applications, suggesting that non-determinism is “most often the
result of a mistake on the part of the programmer” [13].

7 Conclusion

In this paper, we proposed a flow-based approach for detecting critical non-deterministic
behaviors, namely the ones affecting the blockchain state. Our proposal has been implemented
in GoLiSA, a static analyzer for Go applications. To the best of our knowledge, GoLiSA is the
first semantic-based static analyzer for blockchain software able to detect non-deterministic
behaviors, with an extremely low false alarm prevision. In the context of smart contracts, the
proposed approach is placed in an off-chain architecture, i.e., the analysis is done before smart
contracts are deployed in the blockchain, and it is not mandatory. As future work, besides
supporting the missing Go features discussed in Section 5 to enhance the analysis coverage,
we plan to test GoLiSA in an on-chain architecture [35], making the non-determinism checker
part of the consensus protocol, with the goal of keeping the code stored within the blockchain
deterministic. The analysis could be enriched with a context-sensitive flow reconstructor,
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such as BackFlow [21], that starting from the results of a information flow engine, reconstructs
how the information flows inside the program and builds paths connecting sources to sinks.
Moreover, we have focused on the non-determinism problem, but our future research will
address the problem of detecting other and equally critical vulnerabilities that can affect
blockchain software written using general-purpose languages, such as numerical overflow.

Our proposal follows a fully static approach, justified by the fact that we aim at proving
the determinism of blockchain software, regardless of the possible executions. However,
even if the evaluation on the selected benchmark shows optimal results, the risk of getting
false alarms analyzing other applications is still present, being our approach based on
over-approximating possible executions via abstract interpretation. In future works, hybrid
approaches between static and dynamic analyses will be investigated to get the benefits of
both techniques.

Finally, in order to assess the effectiveness of our proposal, we have conducted our
evaluation on Hyperledger Fabric blockchain software, mostly because it is the most popular
framework among those cited in the paper. To give a larger coverage to GoLiSA of the
blockchain software that can analyze, the next step will be to design significant benchmarks
also for the other frameworks, such as Tendermint core and Cosmos SDK, on which we can
experiment our static analyzer.
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