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Abstract. Source code similarity aims at recognizing common charac-
teristics between two different codes by means of their components. It
plays a significant role in many activities regarding software development
and analysis which have the potential of assisting software teams work-
ing on large codebases. Existing approaches aim at computing similarity
between two codes by suitable representation of them which captures
syntactic and semantic properties. However, they lack explainability and
generalization for multiple languages comparison. Here, we present a pre-
liminary result that attempts at providing a graph-focused representa-
tion of code by means of which clustering and classification of programs
is possible while exposing explainability and generalizability character-
istics.

Keywords: Code Similarity · machine learning · Graph-focused Fea-
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1 Introduction

Source code similarity aims at recognizing common characteristics between two
different codes by means of their components. It plays a significant role in many
activities regarding software development and analysis, which include plagia-
rism detection [27], malicious code detection and injection [6,3,4], clone recogni-
tion [14], bug identification [12], and code refactoring. In order to obtain precise
and reliable code similarity tools, they cannot be based just on the code syntactic
structure, but also semantics must be taken into account. For instance, a naive
code similarity measure could be given by comparing the syntactic structure of
the two compared program fragments (e.g., plain text, keywords, tokens, API
calls). Nevertheless, such a trivial similarity technique does not sufficiently cap-
ture the semantics of the programs. In particular, two program fragments can
have different syntactic structures but they implement the same functionality.
On the opposite, they can have similar syntax but they differ in their behaviors.
Thus, more sophisticated representations of the fragments composing a program,
and measures based on such representations, are required.
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Due to the wide range of features that can be taken into account in this
context, it is possible to fine-tune the information embedded in such represen-
tations. Based on [24], code similarity is classically split into four main types of
increasing complexity, such that each type subsumes the previous one: Type I
represents a complete syntactic similarity, modulo blank characters, comments,
and indentation; Type II represents a syntactic similarity, modulo identifiers re-
naming, literals, and types; Type III represents copied fragments with further
modifications in statements; Type IV represents a functional similarity, i.e., se-
mantic similarity.

At different levels, each type of technique aims at detecting if a program
fragment is a code clone of another one. From here on, we refer to code clones as
portions of code that share some level of similarity with other code segments. The
type of clone is defined based on the level of similarity between the fragments.

Tools for identifying code clones are categorized based on the method used to
represent source code and the technique for comparing them. The most common
traditional categories include those based on text, token, tree, graph, metrics,
and hybrid methods [7,24,25]. Recently, there has been a growing interest in
applying Machine Learning (ML) approaches, specifically Deep Learning (DL)
techniques, to identify code clones [15]. These methods are particularly useful
for detecting Type III and Type IV clones, which are the most challenging to
identify. They employ different neural network architectures (e.g., DNN, GNN,
RvNN), source code representations (e.g., Abstract Syntax Tree, Control-flow
Graph, Data Flow Graph, Program Dependence Graph, or combination of them)
and embedding techniques, such as word2vec [18], code2vec [2], graph2vec [20],
and RAE [13].

In this paper, we introduce novel techniques for tackling the code similar-
ity problem. Our approach relies on both Control-flow Graph (CFG) [8] and
the LLVM Intermediate Representation (LLVM-IR) concepts for representing
source code. Furthermore, we employ both supervised and unsupervised Ma-
chine Learning methodologies to conduct code similarity analysis.

It is worth noting that the proposed code representation does not focus solely
on Type III or Type IV similarities. Instead, it captures both syntactic and se-
mantic features of the code, allowing for the detection of various types of code
clones, exhibiting similarities in terms of design and functionality. By combining
these different approaches, the proposed methods could identify a broader range
of code clones than traditional techniques that focus solely on either syntax or se-
mantics. In particular, CFG encodes the semantics flow of a program of interest,
i.e., how control flows through each code element. Hence, it does not completely
capture the program semantics (e.g., it does not capture how values flow within
the program). Nevertheless, such a representation does not completely fit for
Type IV similarity, since complete semantic equivalence is required by its defini-
tion. Still, it subsumes Type III similarity, since it CFG fully encodes the syntax,
besides describing the control flow. In addition, for each source language, catch-
ing Type III similarity is affected by how the language-specific constructs are
mapped into LLVM-IR instructions.
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Our proposed approach focuses on pursuing an explainable approach to code
similarity analysis. Specifically, features used for code similarity can be remapped
to fragments of original source code. This provides a more transparent and inter-
pretable analysis: for example, it could be used during the study of the feature
importance of the models to refer directly to portions of source code. Further-
more, this can enable a deeper understanding of the similarities and differences
between code fragments.

The rest of the manuscript is organized as follows. In Section 2 we present
the three main phases of the proposed approach to extract graph-based features
from C/C++ source code. In addition, both supervised and unsupervised Machine
Learning methodologies used are explained here. In Section 3 we show some of
the obtained results using both clustering and classification methods. In Section 4
we discuss all the pros and cons of using this methodology. Section 5 concludes
the paper.

2 Methods

In this section, we describe the methods adopted in our solution for facing the
code similarity problem. This study focuses on the code similarity of C/C++
translation units.1 Nevertheless, as we will discuss in Section 4, the proposed
solution can be also adapted to other programming languages. Before going into
details of our contribution, in the following, we describe the toolchain of our
solution, from a high-level point of view.

The overall architecture is depicted in Figure 1. The process consists of three
main steps. The first step corresponds to a preprocessing phase that prepares
the input source code for further analysis. In particular, this phase translates
the program to a lower-level language, namely LLVM-IR [26], an intermediate
representation used by the LLVM compiler to represent the source code during all
the compilation phases. LLVM-IR is usually employed by compilers to describe
and store all the information retrieved from the source code in order to perform
a more precise translation into the target language.

The output of this phase is a set of CFGs derived from the LLVM-IR repre-
sentation of the program of interest, each corresponding to a function/method
of the input program. They are the inputs of the second step, which manipulates
and enriches the basic CFG structure in order to obtain the so-called Augmented
Control-flow Graphs (A-CFGs). This phase also manages the construction of the
Augmented Call Graph (A-CG), namely a single graph made of A-CFGs, where
also calling relationships are tracked. From this graph structure, in the last phase,
1 In C/C++, executable programs are obtained by linking together the code coming

from a complete set of translation units. A translation unit is the portion of a pro-
gram a compiler operates upon, and is constituted by a main file (typically with a
.c/.C/.cxx/.cpp extension) along with all header files (typically with a .h/.H/.hpp
extension) that the main file includes, directly or indirectly. A prerequisite of our ap-
proach is that the translation units to be analyzed are complete, so that the Clang
compiler can process them without errors.
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Fig. 1: Features extraction method split in its three main phases: preprocessing,
construction of the A-CFGs/A-CG and feature extraction.

we rely on GraphGrepSX [5] for the graph features extraction. Source code is
represented by the sets of features previously extracted, used by clustering and
classification methods to reveal similarities between programs.

2.1 Preprocessing

The preprocessing stage involves two steps, both implemented by tools coming
from the LLVM toolchain.

The first step involves the compilation of a C/C++ translation unit to its cor-
responding LLVM-IR representation. In order to do this, we rely on the Clang
compiler. During the compilation process, Clang is instructed to compile to
LLVM-IR language, instead of the default object code. Moreover, plain names
(the ones appearing in the original source code) are preserved during this com-
pilation phase. Additionally, Clang is run with all optimizations switched off,
so as to ensure that the output code preserves the structure and functionalities
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of the source code. These steps are crucial for enhancing the CFG and extract-
ing features in the subsequent phases, making it easier to analyze and extract
information for our purposes.

From the LLVM-IR code, the second phase manages the construction of
CFGs. A CFG, in LLVM flavour, is a directed graph G = (N,E) where nodes
N are basic blocks, and edges E ⊆ N ×N connecting basic blocks correspond to
jumps in the control flow between the two linked basic blocks. Each basic block
starts with a label (giving the basic block a symbol table entry), contains a list of
instructions to be executed in sequence, and ends with a terminator instruction
(such as a branch or function return) [26]. In order to generate CFGs, we rely
on opt, which is a LLVM tool useful to perform optimization and analysis of
LLVM-IR code. Finally, we rely on opt also to create the call graph [8] (CG), a
graph that tracks calling relationships between functions in the program.

2.2 Construction of the Augmented Control-flow Graphs

In this phase, a new graph data structure, called Augmented Control-flow Graph
(A-CFG) is built to enhance the information of a traditional CFG.

A A-CFG resembles a single-instruction CFG, where each basic block of
the A-CFG corresponds to a single instruction. In order to obtain this, each
CFG is analyzed individually. Each basic block of the original CFG is exploded,
in the corresponding A-CFG, into a sequence of single LLVM-IR instructions,
connected by sequential edges and preserving the original control flow. We call
these nodes instruction nodes, and we call the edges connecting instructions
nodes flow edges.

After this initial manipulation, further information is added to a A-CFG. In
particular,2 for each instruction node, variable updates (i.e., assignments) and
reads, and used constants are retrieved, and for each variable and constant, a
new node is added to the A-CFG. We refer to these nodes as variable nodes,
which are also labeled with the variable type, and constant nodes, labeled with
the constant value, respectively. Then, for each instruction node updating a
variable x, an edge from the instruction node to the corresponding variable node
x is created. Similarly, if the instruction node reads a variable x, an edge from
the variable node x to the instruction node is added. The direction of the edge
reflects whether the variable is written or read. Similarly, if an instruction node
reads a constant, an edge connecting it to the corresponding constant node is
added. We refer to these three types of edges as data edges.

Instruction nodes labels are assigned through a surjective map map : O → L,
where O denotes the set of LLVM-IR op-codes,3 and L is an arbitrary set of
labels. The standard map maps each specific LLVM-IR op-code (e.g., add, store)
to one of the nine categories defined in the LLVM-IR language manual [26]:

2 This phase is managed by using a custom LLVM-IR parser. The parser is generated
using ANTLR [21] starting from the LLVM-IR 7.0.0 grammar.

3 In LLVM-IR, op-code refers to the instruction code (or name) that specifies the
operation to be performed by the instruction.
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1 %0 = load i32 , i32* %x, align 4
2 %add = add nsw i32 %0, 1
3 store i32 %add , i32* %x, align 4

(a) LLVM-IR

i32*

%x

memory

i32

%0

binary

i32

%add

memory

1

(b) part of A-CFG

Fig. 2: LLVM-IR code and portion of A-CFG for C++ instruction x = x + 1;.

terminator, binary, bitwise, vector, aggregate, memory, conversion, other and
intrinsic. For instance, the add op-code at line 2 in in Figure 2a, corresponds to
the green node in the A-CFG reported in Figure 2b, where the standard map
has mapped the op-code add to the label binary. Instead, the load and store
op-codes at lines 1 and 3, respectively, are mapped in the orange nodes, where
the standard map has mapped them to memory.

However, in general, a custom map function can be built acting on the set
of labels L. Restricting or expanding L, starting from the set of the LLVM-
IR instruction categories discussed above, one can fine-tune the level of detail
regarding the information related to instruction nodes. This allows to meet the
specific needs of the feature generation process, where nodes with the same label
are indistinguishable.

Figure 2 shows how a part of a single basic block, reported in Figure 2a,
is transformed into its corresponding A-CFG (Figure 2b) using the standard
map discussed above. In particular, black edges represent flow edges, blue edges
represent data edges concerning variables, and red edges represent data edges
concerning constants.

It is also possible to specify whether to generate variable and constant ele-
ments, use simplified types, and remove unnecessary terminator nodes, setting
the Boolean parameters var, const, sty, and cut, respectively. Such behavior is
provided by specific parameters that can be activated/deactivated by the user.

The A-CFG structure has the granularity of a single function in a program,
without tracking calling relationships between different A-CFGs. In order to
represent an entire program, starting from the so-built A-CFGs, the idea is to
create an Augmented Call Graph (A-CG), namely a new graph consisting of the
union of the A-CFGs, linked together by following the function calls within it.

Specifically, for each instruction node n calling a function f , the following
edges are added: one edge from n to the entry point instruction node of the
A-CFG of the function f (it is unique) and one for each exit instruction node
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(i.e., an instruction node terminating f) to n. This process is carried out by
searching for calling instruction nodes and analyzing the original CG of the
program, generated in the first phase.

2.3 Feature Extraction

The third and last phase consists of extracting all the features that will char-
acterize the analyzed file during the execution of the Machine Learning models.
The input of this phase is an augmented graph, both A-CFG and A-CG, created
in the previous phase.

For a given graph G, the proposed method uses paths of G of bounded
length as features. The indexing phase of GraphGrepSX [5] is used to build an
index in a prefix-tree format for a graph database. The index is constructed by
performing a depth-first search for each node nj of the graph. During this phase,
all paths of length lp or less are extracted, and each path is represented by the
labels of its nodes. More formally, each path (v1, v2, . . . , vlp) is mapped into a
sequence of labels (l1, l2, . . . , llp). All the subpaths (vi, . . . , vj) for 1 ≤ i ≤ j ≤ lp
of a path (v1, v2, . . . , vlp) will be included in the global index, too. The number
of times a path appears in the graph is also recorded.

In our proposal, a prefix-tree is built for a A-CG G. Then, only the paths
of maximal length (i.e., equal to lp) are considered as features. Each feature is
identified by a path p and its value corresponds to the number of occurrences of
p in G. As a set of features describing the graph, we extract all the paths leading
to the leaves at depth lp of the prefix tree.

2.4 Machine Learning

Let Fn be a set of features, with Fi being the i-th feature. Let O = {o1, o2, . . . ,
om} be a set of vectors (or objects) such that oi ∈ Fn.

Let d(oi, oj) be a real number representing the distance measure between
objects oi and oj . Usually, distance function d is symmetric, d(oi, oj) = d(oj , oi),
positive separable, d(oi, oj) = 0 ⇔ oi = oj , and provides triangular inequality,
d(oi, oj) ≤ d(oi, ok)+d(ok, oj). A clustering method is an unsupervised Machine
Learning model which uses the distance function d between objects to organize
data into groups, such that there is high similarity (low distance) within mem-
bers in each group and low similarity across the groups. Each group of data
represents a cluster. There are several approaches to clustering, one of which is
agglomerative hierarchical clustering. This method works by iteratively merging
the closest pair of data points or clusters until all data points belong to a single
cluster. The distance between two clusters is computed using the distance func-
tion d between data points and the agglomeration method. The resulting cluster
hierarchy, or dendrogram, can be cut at different levels to obtain different sets
of clusters.

Let C = {c1, c2, . . . , ct} be a set of classes such that an surjective function
c : O 7→ C is defined. Classification is a supervised Machine Learning model
used to assign a class to a new object o /∈ O by taking into example O and the
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relation between the objects in O and their assigned classes, the method used
to do this is defined by the model.

Let split O into two subsets OT and OV such that OT
⋂
OV = ∅, which are

respectively called the training and the verification set. The training set is used
to train a model, while the verification set is used for assessing the performance
of the model in correctly assigning the classes to the objects in OV without
knowing their original/real class. It is essential that the balance between the
classes of the original data set must be preserved in the training and verification
sets.

Given a Machine Learning model trained on OT for all the classes C and
given an object o ∈ OV , let c̃(o) be the class that the model assigns to o and c(o)
be the actual class for the object o. We distinguish the object in OV into four
sets, depending on the accordance between their real class i and the class that is
assigned by the model, that are: true positives (TPi), true negative (TNi), false
positives (FPi) and false negatives (FNi). They are defined as: TPi = ||{o ∈
OV | c(o) = c̃(o) = i}||, TNi = ||{o ∈ OV | c(o) ̸= i ∧ c̃(o) ̸= i}||, FPi = ||{o ∈
OV | c(o) ̸= i∧ c̃(o) = i}||, FNi = ||{o ∈ OV | c(o) = i∧ c̃(o) ̸= i}||. The accuracy
of the model is defined as (

∑t
i=1 ||TPi||)/(|OV |). Precision and recall are defined

for each class i as |TPi|/(|TPi|+ |FPi|) and |TPi|/(|TPi|+ |FNi|), respectively.
The F1-score for each class i is defined as (2|TPi|)/(2|TPi| + |FPi| + |FNi|).
Because the problem is defined for multiple classes, we can compute a single
value for these metrics (precision, recall, F1-score) by averaging over such classes.
In particular, let Oi = {o ∈ OV |c(o) = ci} a subset of verification set and Mi

a performance metric (one of precision, recall, F1-score) computed on class ci.
The weighted average version of M uses class cardinality as weights and it is
defined as M = 1

|OV |
∑

ci∈C |Oi|Mi.

A common approach for exploiting clustering results in a classification task is
to assign a class label to each cluster based on the majority class of its constituent
data points. Specifically, for each cluster, the class that has the highest number
of objects within the cluster is selected as the assigned class label. If ground-
truth labels are available, external evaluation measures can be used to evaluate
clustering. One commonly used metric is the Rand Index (RI) [11]. It measures
the agreement between two clusterings by comparing every pair of data points
and counting the number of pairs that are grouped together or separately in
both the predicted and ground-truth clusterings. It is defined as the ratio of the
sum of agreements (pairs assigned to the same cluster in both clusterings) and
disagreements (pairs assigned to different clusters in both clusterings) over the
total number of pairs.

This work employs the SciPy library [28] for implementing clustering models,
while the Scikit-learn [22] library is used for developing classification models
and computing evaluation metrics.
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3 Results

We experimentally evaluate our proposal by using it as a basis for clustering and
classification models.

We consider as data set a subset of C++ programs, included in the CodeNet
project [23]. The CodeNet project provides a large collection of source files
in several programming languages, such as C, C++, Java and Python, and for
each of them there are extensive metadata and tools for accessing the dataset
to select custom information. The samples come from online systems that allow
users to submit a solution to a variety of programming problems, in the form of
competitions or courses, ranging from elementary exercises to problems requiring
the use of advanced algorithms. Each consists of a single file in which the test
cases and printouts of the required results are included.

CodeNet includes several benchmark datasets, created specifically to train
models and conduct code classification and similarity experiments. These datasets
were obtained by filtering the original dataset in order to remove identical
problems and nearly duplicate code samples, with the goal of obtaining bet-
ter training and more accurate metrics [1]. In this work, we used a subset of
C++1000 data set (available at https://developer.ibm.com/exchanges/data/all/
project-codenet/) consisting of 1000 programming problems, each of them con-
taining 500 C++ programs (submissions).

With respect to the existing taxonomy, the proposed approach can be con-
sidered to be between type III and type IV . Thus, a direct comparison with
state-of-the-art approaches is not suitable.

3.1 Clustering

In these experiments, 100 random submissions were considered for each of 10
randomly chosen problems of CodeNet dataset. For each (submission) pro-
gram, the corresponding feature vector is generated using the following genera-
tion method’s parameters: lp = 3, const = True, var = True, sty = True, cut
= True. Also, four atomic categories for store, load, phi, and call instruc-
tions are added to the standard map function. Each clustering experiment is
designed as follows: N random problems (from 10 available) are selected, whose
corresponding submission’s feature vectors are taken and merged into a single
dataset; outliers are first removed from it using Isolation Forest (IF) [17] and
then features are selected by using the Extra Tree Classifier (ETC) [9] supervised
method (the ground-truth label are the problem to which each submission be-
longs); the distance matrix between objects is computed using the Boolean Jac-
card index and then a hierarchical clustering algorithm from the SciPy library
tries to find the clusters. For each experiment, four agglomeration methods were
tried: single, complete, average and ward [19]. 10 experiments were conducted
for each combination of N and for each agglomeration method.

Table 1 reports mean and standard deviation of Rand Index (RI) for all the
clustering experiments, grouped by the the number of considered problems N
and by the agglomeration method used in the clustering algorithm.

https://developer.ibm.com/exchanges/data/all/project-codenet/
https://developer.ibm.com/exchanges/data/all/project-codenet/
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Fig. 3: Dendrogram of an experiment which considers N = 6 problems (about
600 submissions) and uses ward agglomeration method.

First of all, it shows that there is not actually a link between the variation in
the problems considered (N) and the RI metric: in some agglomeration methods,
there is a direct growth of both of them; in other methods, there is an inverse
growth of them. Second, ward agglomeration generally performs better than all
the other methods, despite N .

In addition, a dendrogram obtained from an experiment involving N = 6
problems (thus about 600 submissions) and using a ward agglomeration method
is shown in Figure 3: each leaf in the tree represents a program; the color of the
leaf represents the problem to which it belongs, while the color of the subtrees
represent the clusters found by performing a cut to obtain at most N clusters.

It can be seen that the partitioning partially respects Type IV code similarity:
some clusters are pure with regard to the problem they belong to, while others
contain programs belonging to different problems. However, in the latter case,
almost-pure subtrees are visible, suggesting that programs belonging to the same
problem were joined in the same cluster in the early stages of the algorithm.

3.2 Classification

For the classification experiments, the A-CFG generation parameters for execut-
ing one experiment are fixed, which are lp = 3, const = True, var = False, sty

N Single Complete Average Ward
2 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.89 ± 0.08
3 0.39 ± 0.02 0.39 ± 0.07 0.43 ± 0.12 0.68 ± 0.07
4 0.32 ± 0.02 0.53 ± 0.16 0.37 ± 0.09 0.71 ± 0.04
5 0.29 ± 0.03 0.63 ± 0.08 0.48 ± 0.14 0.76 ± 0.04
6 0.25 ± 0.02 0.66 ± 0.08 0.48 ± 0.11 0.81 ± 0.02
7 0.24 ± 0.02 0.73 ± 0.05 0.65 ± 0.07 0.81 ± 0.03
8 0.23 ± 0.01 0.79 ± 0.02 0.67 ± 0.07 0.83 ± 0.01
9 0.22 ± 0.02 0.81 ± 0.02 0.72 ± 0.05 0.85 ± 0.02
10 0.21 ± 0.01 0.83 ± 0.01 0.71 ± 0.04 0.87 ± 0.01

Table 1: Mean and standard deviation of RI measure regarding the clustering
experiments. Results are grouped by the number of different problems solved by
the input programs taken into account, N , and by agglomeration method.
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Accuracy F1-score Precision Recall
KN 0.76 ± 0.03 0.76 ± 0.03 0.79 ± 0.03 0.76 ± 0.03
SVC (C=1) 0.80 ± 0.06 0.81 ± 0.06 0.83 ± 0.04 0.80 ± 0.06
NuSVC 0.77 ± 0.05 0.78 ± 0.05 0.81 ± 0.03 0.77 ± 0.05
DT 0.74 ± 0.05 0.74 ± 0.05 0.75 ± 0.05 0.74 ± 0.05
RF 0.86 ± 0.03 0.86 ± 0.03 0.87 ± 0.03 0.86 ± 0.03
MLP 0.84 ± 0.01 0.84 ± 0.01 0.85 ± 0.01 0.84 ± 0.01
GNB 0.59 ± 0.07 0.58 ± 0.07 0.69 ± 0.03 0.59 ± 0.07

Table 2: Results of the classification experiments by varying the type of employed
classifier.

= False, cut = True and standard map function. As done in clustering exper-
iments, here 10 random problems are used from the CodeNet dataset which
are the classes during the classification. Every problem has around 100 elements.
Table 2 shows mean and standard deviation of the accuracy, F1-score, precision
and recall for all the classification methods tried: K-Neighbors (KN), Support
Vector Classifier (SVC), Non linear Support Vector Classifier (NuSVC), Deci-
sion Tree (DT), Random Forest (RF), MultiLayer Perceptron (MLP), Gaussian
Naive Bayes (GNB). All the metrics are computed by averaging the results of
a 5-fold cross-validation process. F1-score, precision, and recall are computed
as an average between the results of the single classes, weighted using the class
cardinality. Almost all the methods obtain a relatively high score, but the best
ones are Random Forest and MLP, with a value of accuracy higher than 0.84.

A new test was carried out by doing thousands of experiments with varying
generation parameters. Figure 4 shows all methods’ mean accuracy trend of all
the experiments in regard to the values of the generation parameter analyzed
(var, const, cut, sty), one in every plot. In particular, the growth of the value
of lp is represented on the horizontal axis and the mean accuracy is represented
on the vertical axis. The variables const, sty, and cut have almost the same
mean accuracy for both the true and the false values of the parameter. On the
other hand, the input parameter var presents a significant change in the mean
accuracy. Not taking into account the elements related to variables generally
leads to better results than using them. This can be explained by the fact that the
classification methods focus on more important characteristics since the variables
are omitted in the graph generation.

The time needed for the classification in relation to the value of the generation
parameter lp is shown in Figure 5. Due to the 5-fold cross-validation process,
each time corresponds to the sum of five training and five validation processes.
Every line in the figure corresponds to the mean for every method for every
parameter combination. The lighter color stripe represents 95% of the values
around the mean value. The figure shows how MLP is the method with the
highest time, below it, there is RF, and below them, we can find all the other
methods. However, it can be seen that, for all the methods analyzed, the time
increases when the value of lp increases.
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Fig. 4: Variation of the mean accuracy over different values of lp in respect to
the change of the parameter values.

Fig. 5: Trend of log classification times for every classification method.

4 Discussion

The LLVM-IR code represents the actual starting point for the proposed features
extraction method. For this reason, two considerations can be done. First, this
methodology is easily extended to all those programs written in a language L
for which an L → LLVM-IR compiler exists. This allows, secondly, a potential
comparison between source codes written in different languages. To address this
scenario, a more in-depth study on how language constructs are mapped to
LLVM-IR is necessary.

The feature extraction phase proposed replaces classic embedding techniques
used to describe the code graph representation in a lot of ML approaches seen
before. In this case, a variable-length vector is created. It aims to lose as little
information on the graph as possible. This set of features depends both on all the
graph generation parameters and the path length lp used in feature extraction.
In particular, the path length allows to describe the graph in different levels
of detail, being more and more precise when the length of extracted path lp
increases. Moreover, the map function allows the abstraction level of feature
to be raised or lowered even further. This is because the labeling given by the
function is reflected in the graph’ instruction nodes, and thus in the extracted
features. In this study, we analyzed small source code, however, it could be
useful to use higher values of lp for analyzing bigger programs. To enable this
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level of detail, extended versions of GraphGrepSX [10,16] will be needed for
overcoming current running time and space limitations.

Differently from what happens in modern ML approaches to code similarity,
our approach makes a step toward explainability. This is because the features
created, during the extraction phase, can be remapped to a set of lines in the
code fragment with a certain degree of approximation. By definition, each fea-
ture represents a number of identical paths within A-CFG/A-CG graphs, which
mainly contain a succession of LLVM-IR instructions. For this reason, using com-
piler debugging information, it is possible to trace the set of lines of code that
generated these successions of LLVM-IR instructions. This explainability feature
gives the possibility to visualize which parts of the analyzed code fragments are
more responsible for a high value of similarity between them.

5 Conclusions

Software complexity keeps growing, and the functions assigned to software are
increasingly critical, in terms of safety and/or security. In addition, there is a
general shortage of programmers, which are also characterized by a high turnover
rate. While keeping track of all code in typical software projects is difficult in
general, it is particularly difficult for developers joining the team at a later stage,
and there are not enough senior developers to effectively mentor junior devel-
opers. As a result software projects frequently run late and/or enter production
without a sufficient level of quality and maturity.

The techniques proposed in this paper for the identification of code similar-
ities have the potential of assisting software teams working on larger codebases
in a number of ways: identifying unwanted clones or code illegally copied in vio-
lation of open-source licenses; identifying vulnerabilities via similarity with code
available in public vulnerability databases; assisting developers in performing
tedious tasks (applying a learned recipe multiple times in multiple similar con-
texts); increasing developers’ productivity by identifying regions of code that are
amenable to the same treatment (reduction of context switches); capturing to
some extent the knowledge of expert developers and project veterans and make
it available to newcomers.

The proposed approach is based on a graph representation of the source
code on top of which graph-focuses features are extracted for indexing it. In par-
ticular, atomic LLVM-IR instructions are ensembled in order to represent the
control flow of the indexed program plus other suitable information aimed at
better capturing the semantics of the code. Inspired by previous approaches in
graph indexing techniques, our methodology extracts paths of fixed length from
the formed graph and uses them as features of the indexed program. Because
such paths correspond to specific portions of the input code, such features are
used to characterize the indexed program as a whole, but they are also capa-
ble of identifying small portions of it. This aspect brings explainability to the
overall machine learning approach that is applied for clustering programs and
for classifying them by computing code similarity via such paths. An evaluation
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of the proposed approach to an already existing data set of programs developed
for solving different problems shows that it is possible to compute clusters of the
programs that reflect the actual grouping of them with a feasible approximation.
The evaluation also included supervised machine learning for classifying the pro-
grams according to the problem they are aimed at solving, showing promising
results obtained by statistical evaluation of the performance. The proposed ap-
proach is not directly comparable to existing methodologies because it focuses on
finding a type of source code similarity that is not currently recognized by any of
the existing tools. However, the main advantages of it are the above-mentioned
explainability and the fact that it works on LLVM-IR instructions. This restricts
the similarity calculation to only those source codes that are free of compilation
errors. but at the same time, it allows the approach to be potentially applied to
any programming language that can be compiled to LLVM-IR. Thus, as a fu-
ture work, we plan to evaluate its performance in clustering and classifying other
programming languages, rather than C/C++, and in exploring a methodology for
comparing programs developed in two different languages.
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