A Sound Abstract Interpreter for Dynamic Code

Vincenzo Arceri
University of Verona - Dept. of Computer Science
Verona, Italy
vincenzo.arceri@univr.it

ABSTRACT

Dynamic languages, such as JavaScript, employ string-to-code prim-
itives to turn dynamically generated text into executable code at
run-time. These features make standard static analysis extremely
hard if not impossible because its essential data structures, i.e., the
control-flow graph and the system of recursive equations associated
with the program to analyze, are themselves dynamically mutat-
ing objects. Hence, the need to handle string-to-code statements
approximating what they can execute, and therefore allowing the
analysis to continue (even in presence of string-to-code statements)
with an acceptable degree of precision. In order to reach this goal,
we propose a static analysis allowing us to collect string values
and allowing us to soundly over-approximate and analyze the code
potentially executed by a string-to-code statement.

KEYWORDS

Abstract interpretation, Static analysis, Dynamic languages

ACM Reference Format:

Vincenzo Arceri and Isabella Mastroeni. 2020. A Sound Abstract Interpreter
for Dynamic Code. In The 35th ACM/SIGAPP Symposium on Applied Com-
puting (SAC °20), March 30-April 3, 2020, Brno, Czech Republic. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3341105.3373964

1 INTRODUCTION

The possibility of dynamically building code instructions as the
result of text manipulation is a key aspect in dynamic languages.
With reflection, programs can turn text, which can be built at run-
time, into executable code [30]. These features are often used in code
protection and tamper resistant applications, employing camouflage
for escaping attack or detection [26], in malware, in mobile code,
in web servers, in code compression, and in Just-in-Time (JIT)
compilers employing optimized run-time code generation.

While the use of dynamic code generation may simplify con-
siderably the art and performance of programming, this practice is
also highly dangerous, making the code prone to unexpected be-
haviors and malicious exploits of its dynamic vulnerabilities, such
as code/object-injection attacks for privilege escalation, database
corruption, and malware propagation. Clearly more advanced and
secure functionalities based on reflection could be permitted if we

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SAC °20, March 30-April 3, 2020, Brno, Czech Republic

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6866-7/20/03....$15.00
https://doi.org/10.1145/3341105.3373964

Isabella Mastroeni
University of Verona - Dept. of Computer Science
Verona, Italy
isabella.mastroeni@univr.it

vd, ac, la =

wa o,
)

ac += tt.substring(tt.

v = "wZsZ"; m =" index0f ("0"), 3);
AYcYtYiYvYeYXY"; ac += tt.substring(tt.
tt = "AObyaSZjectB"; index0f ("j"), 11);
1 = "WYSYcYrYiYpYty. while (k+=2 < 1l.length)
YSYhYeYlYlY"; la = la + 1l.charAt(k);
while (i+=2 < v.length)
vd = vd + v.charAt(i); d = vd + "=new " + ac +
while (j+=2 < m.length) (" + la + ")";
ac = ac + m.charAt(j); eval(d);

Figure 1: A potentially malicious JavaScript program.

better master how to safely generate, analyze, debug, and deploy
programs that dynamically generate and manipulate code.

There are lots of good reasons to analyze programs building
strings that can be executed as code. An interesting example is
code obfuscation. Recently, several techniques have been proposed
for JavaScript code obfuscation!, meaning that also client-side
code protection starts to be a critical aspect to tackle. For exam-
ple, consider the JavaScript fragment in Fig. 1 where strings are
manipulated, de-obfuscated [17], combined together into the vari-
able d and finally transformed into code by eval, the statement
d = new ActiveXObject(WScript.Shell). This command, in Inter-
net Explorer, opens a shell which may execute malicious commands.
The command is not hard-coded in the fragment but it is built at
run-time and the initial values of i,j and k are unknown, such as
the number of iterations of the loops in the fragment.

Hence, it is not always possible to simply ignore eval without
losing the possibility of analyzing the rest of the program.

The problem. A major problem in presence of dynamic code gen-
eration is that static analysis becomes extremely hard if not even im-
possible. This happens because program’s essential data structures,
such as the control-flow graph and the system of recursive equa-
tions associated with the program to analyze, are themselves dy-
namically mutating objects: "You can’t check code you don’t see” [5].
Indeed, the only sound way anal-
yses have to overcome the execu-

1 x =1; a=1;

2 y = tat+;"; tion of code they “don’t see" is
i w;‘lfey(f;?) to suppose that a string-to-code
5 eval(y); ' statement can do anything, i.e., it
6

X+ can generate any possible memory.

Hence, when reaching such a state-
ment, an analysis may continue but by accepting to lose any previ-
ously gathered information. Let us show this situation on a simple
but enough expressive example. Consider the code on the left, where
the variable x is independent from what is dynamically executed in

Uhttps://www.daftlogic.com/projects-online-javascript- obfuscator.htm,
http://www.danstools.com/javascript-obfuscate/, http://javascript2img.com/

https://doi.org/10.1145/3341105.3373964
https://doi.org/10.1145/3341105.3373964
https://www.daftlogic.com/projects-online-javascript-obfuscator.htm
http://www.danstools.com/javascript-obfuscate/
http://javascript2img.com/

SAC 20, March 30-April 3, 2020, Brno, Czech Republic

y. Suppose we are interested in analyzing the interval of x at line 6.
We can observe that the interval of x at line 6 is precisely [1,9], and
this would be the result of any interval analysis on the code without
line 5. Unfortunately, the presence of eval makes impossible for
the analysis to know whether there is any “hidden" (dynamically
generated) modification of x, and therefore it cannot soundly com-
pute the interval of x. This is a simple use of eval, but anyway it
is not even suitable to code rewriting techniques removing eval
by replacing it with equivalent code (without eval) [22], since the
eval parameter is not hard-coded but dynamically generated.

Clearly, the only way to make the analysis aware of the fact that
the execution of eval does not modify x is to compute, or at least to
over-approximate, what is executed in eval. Hence, we first need
an abstract domain for collecting the strings of variables, such as y
in the example. Unfortunately, this is not sufficient, since once we
have an over-approximation of the values of y we need to “execute”
it for analyzing the potential effects on x. Hence, we also need to
extract, from any abstract value, (an over-approximation of) the
code that could be executed by eval. The idea, at this point, is that
of (recursively) calling the abstract interpreter, for the performed
analysis, on this approximated code. In the example, we could over-
approximate the language of y as an arbitrarily long concatenation
of strings "a++;".2 Anyway, what is clear is that any code we can
synthesize from this language cannot add any statement modifying
x. In particular, the call of the analysis on the synthesized code
will surely return a memory where a is changed, but such that the
analysis of x can continue unaffected.

In this paper, we tackle the problem of analyzing dynamic code
by treating code as any other dynamic structure that can be statically
analyzed by abstract interpretation [13], and to treat the abstract
interpreter as any other program function that can be recursively
called on a piece of code. In order to obtain this it is necessary to
tackle two main issues:

e Since we have to collect the strings that may be argument of
an eval, we need an abstract domain for strings collecting,
as much faithfully as possible, the set of possible values that
a string variable may receive before eval executes it.

e Since we have to analyze the code potentially executed by
eval, we need to extract from its abstract argument an ab-
straction of the code that eval may execute. Clearly, this
abstraction must be in a form that the analyzer can interpret.

As far as the first issue is concerned, we choose regular languages
as abstraction [4], since they are both enough precise for analyzing
string properties in general, and suitable (by considering their finite
representation as finite state automata) for building algorithms able
to extract/approximate the executable sub-language of the string
when an eval occurs. As far as the second issue is concerned, we
choose control-flow graphs (CFG for short) as code abstraction,
where the abstraction relation is the semantic inclusion relation, i.e.,
a CFG Gy is more abstract than the CFG G;, if the set of executions
of G; contains the set of executions of Gy. In this way, we guar-
antee a sound by construction (due to the abstract interpretation
framework) abstraction of the code executed by eval. It is clear that
we have to transform the automaton A, generated by the string
analysis, in a CFG which over-approximates the executable strings

2It is an over-approximation since the program executes at most 9 concatenations.

Vincenzo Arceri and Isabella Mastroeni

Expseu=al|b]|s
AExp >a:== x |n|len(s) |num(s) | a+ala—a|axa
BExp o b= x| true | false [e=e|e>e|e<e|bAb]|-b

SExp 3su= x| | "o" | concat(s,s) | substr(s, a,a)

Comm 3 ¢ := ‘1skip®? | fx:=e® | f¢;2¢B | eval(s)
| 4if (b) {2c®} else {“4c%5}% | “lwhile (b) {2cB}%
WS 3P =it wheren € Z,o0 € %, x € Id

Figure 2: Syntax of yJS.

recognized by A. The result is a first step towards a static analyzer
for dynamic code containing non removable eval statements, that
still have some limitations (as we will explain in Sect. 5.1) but which
provides the necessary ground for studying more general solutions
for the problem.

This provides us both, with a proof of concept that a sound
approximation of semantics of dynamically generated programs is
possible in abstract interpretation, and with a static analyzer for
a core dynamic language. The choice of considering a restricted
language is just for focusing the attention on the approach, namely
on the analysis architecture and on the algorithms proposed.

2 THE ANALYSIS INGREDIENTS

In this section, we focus on the problem of defining an abstract
(collecting) semantics for dynamic programs, namely programs
containing string-to-code statements such as eval. This means,
that, as observed in the introduction, we need a semantics able to
collect strings, sufficiently precise for inferring an approximation of
what could be executed by the string to code statement, but also not
too complex, in order to guarantee the effectiveness of the analysis.

2.1 The language: JS

In this work we propose a language-independent framework for
analyzing dynamic code, for this reason we consider an imperative
language plus eval, pJS in Fig. 2. Each S statement is annotated
with a label £ € Lab corresponding to its program point in P. Let
¢, and ¢ be two special labels identifying the initial and the final
program points, respectively. We denote by Labp the labels of P.

2.2 Analyzing ;JS programs

In this section, we recall the static analysis process and the nec-
essary semantic transformers corresponding to statements of yJS.
In order to analyze a program P € pJS, we analyze its CFG, which
embeds the control structure of the P. We follow [31] for the con-
struction of the CFG , where each node is a program point, and each
edge is labeled with a statement or a guard that is the effect/action
from its input node to its output node. Given P € yJS, we suppose to
generate the corresponding CFG following [31]. In Fig. 3 we report
an example of CFG. It is worth noting that the language of CFG is
slightly different from yJS [31], and in particular it is generated by
the grammar: ;1JSFC 51 := x := e | b | eval(s). Given a program
P € pJS, the corresponding CFG Gp = Cra(P) = (Np,Ep,Ip, Op)
where nodes are N(Gp) £ Labp, the input node (without incom-
ing edges) I(Gp) = £, the output node (without outgoing edges)

A Sound Abstract Interpreter for Dynamic Code

1y .= nw,

X H
while (B)
¥ if (B")
{*x:=concat(x,"a:=1;")
°Y;
else
{®x:=concat(x,"b:=1;")
7}8
3;°

Figure 3: Example of CFG .

O(Gp) £ ¢, and E(Gp) C N(Gp) x 1JSCFC xN(Gp) is the set of the
CFG edges. Let define the set of computations of a CFG as follows.

Vi < k.(£;, 14, 6i41) € E(G) }
to =1(G), fry1 = O(G)

Our aim is to analyze uJS programs by analyzing their CFG . In
particular, we need to define a semantics for yJSCFG. First of all,
we define the set of (collecting) memories as M = Id — p(Z) U
@({false, true}) U p(2*), ranged over m, which is a set of maps
associating with each variable a collection of possible values. We
denote by mg the memory associating @ with any variable, and
M+ associating the set of all possible values with each variable. The
update of memory m for x € Id with set of values v is denoted by
m[x/v], while lub and glb of memories are computed point-wise,
ie, My Lma(x) = my(x)Umsy(x) and my Mmy(x) = My (x) Nma(x).
We can now define how each CFG edge transforms its current state.
The semantics of statements ¢ € pJS¢FC on m is defined as the
function [c] : M — M, where () denotes the collecting semantics
of expressions, defined as additive lift of the standard expression se-
mantics.
[x :=¢e]m
[b] m
[eval(s)] m

Paths(G) = { 1oly... 1%

m[x/(e) m]
mrJ{m:| (b)m; =true }
Llcec [c]m where C 2 (s)mmyS

where M is the intersection in the set of yJS programs, formally let
S a function mapping any sequence of strings of (£*)* on its string
counterpart on * (and, abusing notation, also its additive lift to sets
of sequences), and let tocode(c) the function interpreting a string
o as code, if possible (and as skip otherwise), then for any L C ¥*
we define L A yJS = { tocode(o) ’ celn { S(9) | depS } }

This semantics is standard for assignments and guards, while
when an eval is met, we have to extract from the collection of strings
for its argument only those strings corresponding to executable
programs of]S, we execute all these programs and we join all the
resulting memories. Clearly, if the semantics of the eval input is an
infinite set then the semantics of eval is undecidable. We can extend
this definition of semantics to paths in a CFG Gp: Let & € Paths(Gp),
m=1pl1... 1, and m € M then [[7'[]] m2 [[1k]] o... o[[ll]] o[lo]] m
[31]. Note that, given a program P and Gp = CrG(P), it is well
known [31] that

Vm € M. 311 € Paths(Gp). [P m = U [x]m (1)

mell

where the [P]m is the collection of the executions of P on the
concrete memories collected in m.

SAC 20, March 30-April 3, 2020, Brno, Czech Republic

Algorithm 1 Static analysis on CFG of P.

Require: CFG Gp = (Np, Ep, Ip, Op), initial store Sy
Ensure: s fix-point of the collecting memories for each ¢ € Labp
1: procedure ANALYZE(Gp, Sp)

2: S« S); 8 — @

3 while s # s’ do

4 s s

5 for (f1,c,t,) € Ep do

6 S« s[sg/[c] S Use

return s

At this point, we use this semantic transformer for analyzing
11JS programs by computing the fix-point of the semantics for each
program point. We recast the standard static analysis fix-point
algorithm [28] in our notation. Firstly, we introduce flow-sensitive
stores S = Labp — M, ranged over s, which is a sequences of
memories for each program point, associating with each program
point a memory. We denote by S, the memory at line ¢, i.e., S(¢).
Given a store S, the update of memory S, with a memory m is
denoted s[s;/m] and provides a new store 8" s.t. s, = m while
Ve’ # ¢ we have sj, = sy . Finally, let Sz be the store where all
the memories associate with all the variables the empty set, i.e.,
V¢ € Labp. Sp(f) = Mg. Then the analysis algorithm is Alg. 1,
whose result is a store S s.t. for each ¢ € Labp, S¢ is the fix-point
collecting memory for ¢, namely the set of all the possible values
associated with each variable at the program point ¢.

3 DYNAMIC LANGUAGE ANALYSIS

It is well known that Alg. 1 may diverge on concrete memories.
Hence, in order to ensure convergence, we need abstraction, as
it is usual in static analysis. Unfortunately, this is not sufficient
to avoid divergence when the code is dynamic. We have already
observed that the collection of potential executable strings reaching
an eval argument may be infinite, implying that, as it happens
for data values, we need to abstract also code in order to enforce
convergence. Moreover, there is another potential subtle source of
divergence due to the unpredictability of the code to execute in
dynamic languages. Let us consider the following fragment:
Gy := "eval(x)";%eval(x);5

The eval call actives an infinite nested call chain to eval. This diver-
gence comes directly from the meaning of dynamically generated
code from strings and cannot be controlled by the semantics once
we execute eval. In the following of the section we tackle these
three problems separately, by suitably abstracting data, and in par-
ticular strings preparing the field for analyzing eval (Sect. 3.1); by
approximating code executed by eval in order to recursively call
the analysis algorithm on the abstracted code (Sect. 3.2 and 4); and
by controlling the eval nested calls depth (Sect. 3.3).

3.1 Abstracting data

In order to solve the first source of divergence, we have to consider
a suitable abstraction of data, combining an abstraction of numer-
ical values, of boolean and of strings. In particular, we abstract
integers to the well known interval domain Int for integers [15]
(with widening for avoiding computation divergence) and we use
the identity on booleans: Bool 2 p({true, false}).

SAC 20, March 30-April 3, 2020, Brno, Czech Republic

As far as strings is concerned, we need to collect strings dur-
ing computation in order to be able to extract and approximate
what is executable when an eval statement is met. Therefore, the
resulting domain should have to approximate the set of possible
strings and it has to keep enough information for allowing us to
extract code from it, but it has also to keep enough information
for analyzing properties of strings that are never executed by an
eval during computation. For instance, if we consider abstract pars-
ing (w.r.t. the programming language grammar) for abstracting
strings [16], we could probably keep enough information allowing
us to over-approximate the executed code, when the analyzed string
is executed, but we lose any other kind of information on strings
that could be useful for analyzing strings that are never executed.
We believe that a good choice, meeting all these requirements, are
finite state automata (regular languages), since regular languages
are enough precise for analyzing string properties in general, and
since their finite representation (by means of finite state automata)
is suitable for building algorithms able to extract the executable
sub-language of strings in presence of string-to-code statements.

The finite state automata (FA) domain has been introduced in [4]
for analyzing string manipulation programs, that over-approximates
strings as regular languages, represented by the minimum deter-
ministic finite state automata recognizing them. A FA A is a tuple
(Q,6,qo0, F, %), where Q is the set of states, § € Q X X X Q is the
transition relation, go € Q is the initial state, F C Q is the set of
final states and X is the finite alphabet of symbols. The domain is
(DFA /=, Cpra, Uprss Morss Min(2), Min(2¥)), where DFa /< is the quo-
tient set of DFA w.r.t. the equivalence relation induced by language
equality, Cp,, is the partial order induced by language inclusion, Lip,,
and Mp,, are the lub and glb operators, corresponding to automata
union and intersection, respectively. The minimum is Min(@), cor-
responding to the FA recognizing the empty language and the max-
imum is Min(Z"), corresponding to the FA recognizing any string
of 3*. We abuse notation by representing equivalence classes in the
domain DrA /= by one of its FA (usually the minimum), i.e., when
we write A we mean [A]=. Since the domain DA - is infinite, and it
is not ACGC, i.e., it contains infinite ascending chains, it is equipped
with the parametric widening V7, . The latter is defined in terms of
a state equivalence relation merging states that recognize the same
language, up to a fixed length n € N, a parameter used for tuning
the widening precision [18]. By changing n, we obtain different
widening operators [18]. In particular, the parameter n tunes the
length of the strings determining the equivalence of states and there-
fore used for merging them in the widening: the smaller is n, the
more information will be lost by widening automata. For instance,
let us consider the automata A, A" € Dra/z s.t., £ (A) = {¢,a} and
Z(A”) = {€,a, aa}. The result of the application of the widening
Vi isAV3 A'=A"st. L(A")={d"| neN

At this point, we can combine all the three domains, Int, Bool and
Dra=. The way we combine these domains is not relevant for eval
analysis, but it may be relevant for other language aspects (e.g., type
juggling [3]). The simplest combination is the coalesced sum [12].
In the following, we denote by m* € M* the abstract memories,
associating, with each variable, values in the abstract domain just

Vincenzo Arceri and Isabella Mastroeni

Figure 4: FA A4s abstract value of ds at line 14 of Ex. 3.1.

described. We denote by (-)* m* the abstract expression semantics,
and by []* m* the abstract semantics, computed on this domain.

The eval abstract semantics. At this point, we are able to compute
a static analysis of strings, where strings are abstracted in FA. In
the concrete, eval turns strings into executable code, hence, in
the abstract, we need to approximate the sub-language of only
executable strings. The abstract semantics of eval is

[evai(s)]* m* = | |[c]® m*

ceC

where C £ Z((s)* m*) a S

Example 3.1. Consider the following yJS program P. For the sake
of readability, we omit the else empty branches.
'while (x++ < 3)

{?0s := 0s + "XA:=Bx+1B;y:=1A0;x:=Bx+1A;"3};
Hif (x > 10)

{’0s := "whiAleB(x>5A)A{x:A=x+1;y:=x};B"°};
7if (x = 5)

{80s := "hello{"’};

0if (x = 8)

{Mos := "while(x;"'?};

Bds := deobf(os);eval(ds);?
where ds = deobf(os) is a syntactic sugar for the string transformer
that removes the chars "A" and "B" from the string. In Fig. 4 we
depict the abstract value of ds after the program line 13, computed
analyzing strings on the DFA /= domain, w.r.t. the widening V3 . At
this point, the idea is to remove from the FA all the non-executable
strings. This corresponds to perform the intersection between the
(regular) language computed as the abstract value of ds (denoted by
.Z(st[)# m*) for a given memory m*) and the (context-free) yJS

language (also denoted by yJS): Z((ds)* m*) @ JS.

Note that, the intersection between a context-free language and
a regular language (which is our case) is always a context-free
language. This means that we could remove the non-executable FA
paths by performing the intersection above, but unfortunately the
computation of this intersection could be costly in practice due to
the size of a real language grammar.

The semantics of the other labels in yJ
on our abstract domain:

[x = e]* m* m*[x/(e)” m*]
[bIm* = m*r*F{mf| (b)*m = true }

SCFG can be also abstracted

where M* and Li* are, respectively, the glb and the lub between
abstract values associated to variables. Finally, let us observe how

A Sound Abstract Interpreter for Dynamic Code

Exef
s,m > ASZ(]SD# m#

A% = StuSyn(As)
— e
Gp,s] —» Analyze T = Regex(AE™™)
Gp = (Nodesp, Edges,;)

procedure ANALYZE(Gp, So) G = CFGGen(]rf)

S Sp " Ge,Sm
s < St (\\)
while s # ¢’ do o I .
s s B
for (£1,1,6,) € Edges,.do" Exe l

s < s[sg, /[c] se, Uise,]

end for - Analyze
s# e end while S
end procedure \\ (_? Analyze
J -8 >
A
—

Figure 5: Analyzer architecture and call execution structure.

Eq. 1 is rewritten on the abstract semantics

vm* € M. 3M C Paths(Ge). [P m* < | | [7]*m* (@)

mell

3.2 The analyzer architecture

In this section, we have to characterize the sub-language of exe-
cutable strings of a FA in a constructive way. Moreover, eval turns
strings into executable code, hence, once we have the FA of the
sub-language of executable strings in the abstract domain, we need
to turn FA into executable code. Namely, we have to synthesize from
the FA an approximation of a yJS program that is a sound approxi-
mation of the code that may be executed in the concrete execution.
Hence, we provide an algorithmic approach for approximating in a
decidable way the test .f((]sl)# m*) @ pJS, by building a CFG that
soundly approximates the executable ;S programs in .2 ((s)* m*),
i.e., whose semantics soundly approximates the semantics of the
code that may be executed by eval. This allows us to recursively
call the abstract interpreter on the synthesized CFG . This original
approach works by steps: Let [[eval(s)]]# m* be the semantics the
analyzer has to compute

(1) First, we have to clean up the language £ ((s)* m*) from all
the strings that are surely not executable. This is obtained
by visiting the FA As = (s)* m* and by keeping only those
paths that can be executable. It should be clear that a FA
cannot recognize precisely a context free language, hence
we still keep in the resulting FA not executable strings, in
particular those that do not respect the balanced bracketing.
Let us denote the resulting FA AEStm 2 StmSyn(As);

(2) From the so far obtained automaton AEStm, the aim is to build
a CFG , over-approximating the executable strings in the FA,
ie,Gs = CFGGen(ASpStm). Then on this CFG the analyzer can
be recursively called.

The whole architecture is given in Fig. 5, where the procedure Exe®
encapsulates (1) and (2) and their details are in the next section.

3.3 Abstracting sequences of eval nested calls

We have previously described the architecture of the analysis, which
recursively calls the analysis on the synthesized CFG when an eval
occurs. Due to unpredictability of the code that can be generated,
it is impossible to foresee from the program code whether the

SAC 20, March 30-April 3, 2020, Brno, Czech Republic

recursive sequence of calls will terminate. At the beginning of
Sect. 3, we have seen a quite simple example with a divergent
recursion, but in general this kind of situations may be hard to
detect and is clearly out of the scope of the abstraction made on
data (and of its widening). If the program using eval terminates,
then there must be a maximal depth of nested calls to eval, and
therefore we can ensure enough precision until a maximal degree
of nested calls to eval. However, to extract this maximal depth is
in general undecidable.

In order to approximate this maximal depth of nested eval call,
we can introduce a nested call widening, which consists of fixing a
threshold of allowed height of towers. Once we reach the threshold,
the only way to keep soundness consists of approximating the
collection of values for any variable to the top, when the threshold
is overcome, meaning that after the threshold anything can be
computed. In this way, we guarantee soundness by fixing a degree
of precision in observing the nesting of eval statements.

4 APPROXIMATING EXECUTABLE CODE

In this section, we go into the details of how the synthesis of the
CFG executed by an eval works, i.e., how Exe* works. The abstract
interpreter reported in Fig. 5, when an eval is met, calls Exe* on
the FA approximating the eval input. For example, at line 13 of Ex.
3 we need to execute Exe” on Ays. In particular, Exe* goes through
two steps: (1) extract from a FA the sub-language of executable
strings (StmSyn); (2) generate from the FA of the sub-language of
executable strings a CFG (CFGGen). In the following, we describe
these two sub-modules of Exe”.

4.1 StmSyn: Extracting the executable language

The first step consists of reducing the number of states of the FA,
by over-approximating every string recognized as a statement, or
partial statement, in pJS. The idea is to derive, starting from the
original FA Ag (generated by the string analysis), whose alphabet
is the set of characters X, a new FA whose alphabet is a set of
strings. These strings are obtained by collapsing consecutive edges,
in As, up to any punctuation symbol in Punct = {;,{,},(,)}. In
particular, any executable statement ends with a semicolon by
language definition, while the braces allow us to split strings when
the body of a while or of an if either begins or ends, finally the
parentheses recognize the begin and the end of a parenthesized
expression (the guard of an if or a while). In particular, we define
a set of partial statements, that is a regular over-approximation of
the pJS grammar, which will be the alphabet of the resulting FA.
The partial statements Spstm € 2" are defined as follows

x is a maximal substring of a yJS state-
Spstn = Punct U4 x € £*| ment between two punctaction symbols
(first punctaction symbol excluded)

At this point, the idea is that of transforming the FA Ag on the
alphabet ¥ in the FA A'SJStm on the alphabet Xpstn, removing any
string recognized by As which will be surely not executable. The
soundness constraints obviously consists in guaranteeing that any
executable string is not lost by this transformation.

In order to derive the FA AEStm, we design the procedure StmSyn
(Alg. 2) taking as input a FA on X (i.e., As for eval(s) and returning
the FA on a finite subset of Xpsty. In particular, the idea of Alg. 2
is to perform, starting from qo, a visit of the states recursively

SAC 20, March 30-April 3, 2020, Brno, Czech Republic

Algorithm 2 Building the FA.

Require: AnFA A= (Q,38,q,F.%)

Ensure: AnFA A’ = (Q', &, qo, F', Zpstm)
1: procedure StmSyn(A)
2: Q' —{qo}; FF —Fn{q}; 8 « @, Visited — {qo };
3 stmsyntr(qo);

4: procedure stmsyntr(q)

5: B «BuILD(A4, q);

6 Visited « Visited U{g}; Q' < Q"U{p| (ap) €B }
7 F’<—Q’ﬂF;5’<—5’U{(q,a,p)| (a,p) €B };

8: W «— {p| (a,p) €B }\Visited;

9: while W # @ do

10: select pin W (W «— W\ {p});

11: STMSYNTR(p);

Algorithm 3 Statements recognized from a state q.

Require: AnFA A= (Q,3,qo,F,%)

Ensure: I, set of all pairs (partial statement,reached state)
1: procedure Build(4, q)
2: Iy « @; BUILDTR(Q,£,9)

3: procedure buildtr(q,word,Mark)

Dg—{(ap)] 8(qo)=p }

5 while Ay # @ do

6: select (0,p) in Ag (Ag «— Ag \ {(0.p)})
7 if (g, p) ¢ Mark then

8 if o ¢ Punct A p ¢ F then

9 BUILDTR(p,word.o,MarkU{(q,p) })

10: if o € Punct A word.o € Xsy, then
11: Iy < Iq U {(word.o, p) }

12: if p € F A word.o € Zsyn then

13: Iy < Ig U {(word.o, p) }

identified by Alg. 3, that is the states reached by g reading partial
statements, and to recursively replace the sequences of edges that
recognize a symbol in X5ty with a single edge labeled by the
corresponding string. Alg. 3 scans the edges of the original FA Ag
and, when a punctuation symbol occurs or a final state is reached,
it verifies whether the string read so far is in Xpstn, otherwise
it is discarded: This executability check is performed at lines 8
and 10 and ensures, for any state g of the FA A, that I; contains
only (partial) statements of yJS. In particular, from gy we reach the

states computed by Build(qp), and the corresponding read words.

Recursively, we apply Build to these states, following only those
edges that we have not already visited. For instance, in Fig. 6 we
have the FA Azztm = StmSyn(Aqgs). Note that the string hello{
is not in Ayg since it is discarded by Alg. 2, because it does not
belong to Xpstn. Instead, the string while(x; is still recognized by
the resulting FA even if it is not executable (this is due to the fact that
FA cannot recognize the balanced parenthesisation). Next theorem
tells us that any executable string collected during computation is

kept in the transformed FA, guaranteeing the algorithm soundness.

THEOREM 4.1. Let s € SExp, let As be the FA recognizing the
strings associated with s, and AEStm 2 StmSyn(As), then Yo €
ZL(As) np)S. 36 e f(AspStm) s.t. tocode(S(6)) = o.

Vincenzo Arceri and Isabella Mastroeni

x=x+1

Figure 6: FA A% = StmSyn(Ags).

We can observe that the procedure Build(A, q) executes a num-
ber of recursive-call sequences equal to the number of maximal
acyclic paths starting from g on A. The number of these paths can
be computed as 4o (out(q) — 1) + 1, where out(q) is the number
of outgoing edges from q. The worst case depth of a recursive-call
sequence is |Q|. Thus, the worst case complexity of Build (when
out(q) = |Q| x|Z| for all g € Q)is O(|Q|®). Concerning StmSyn, we
can observe that in the worst case we keep in StmSyn(A) all the |Q|
states of A, hence in this case we launch |Q| times the procedure
Build. Hence, the worst case complexity of StmSyn is O(|Q[*).

4.2 CFGGen: Control-flow graph generation

At this point, the idea is to use the so far obtained FA over Xpstn to
generate a CFG approximating the program executed in eval(s).
This phase is handled by the procedure CFGGen and works by several
steps. It is well known that a FA A can be equivalently rewritten as
a regular expression (regex for short) r, s.t. Z(A) = Z(r) [8]. Let

RE be the domain of regexes over Xpstm, and Regex : FA — RE be
pStm) is

such an extractor. In the running example, rgs = Regex (A ds

the following regex:
rgs = X:=x+1; || while(x; || while(x>5){x:=x+1;y:=x};
[| x:=x+1; (y:=10;x:=x+1;)

where || and * respectively correspond to the disjunction and the
Kleene-star between regexes. The analyzer implements the Brzo-
zowski algebraic method [8] to convert a FA to an equivalent regex.>
At this point, we pass through an augmented version of yJS be-
fore generating a CFG . We add to the yJS boolean expressions a
statically unknown guard ®, namely BExp == --- | ®, that must
be intended as a boolean expression that both evaluates to true
and false (i.e., it is statically unknown). We denote by pJS® the
#1JS language plus ®. Let us show how we want to use ® in the
CFG generation by means of the examples shown in Fig. 7a and
Fig. 7b, corresponding to the CFG of if(®){a:=a+1}else{b:=b+1};
and while(®){a:=a+1};, respectively. When @ occurs in a program,
the CFG generator labels both the edges exiting from its program
point with true. Let us focus on the if case. The static analysis
algorithm on CFG (namely Alg. 1) must take into account both
if-branches, emulating an abstract execution where the boolean
guard is statically unknown. Similarly, in the while case, both the
true and false branches of the while loop are labeled with true.
In this way, we emulate a while loop where the boolean guard is
statically unknown, i.e., the body must be executed an unbounded
number of times.

3Since concatenation is distributive w.r.t. ”, the conversion algorithm always dis-

tributes, in this case. For instance, X=(1; ” 2;) is converted to (x=13) || (x=23).

A Sound Abstract Interpreter for Dynamic Code

(b)

Figure 7: (a) Examples of CFG generation with @.

We abuse notation denoting by CrG the control-flow graph gen-
erator for 11JS® programs. At this point, we have all the ingredients
to generated a JS® program from a regular expression. In particu-
lar, we inductively define on the structure of regexes the function
1§ : RE — pJS® that, given r € RE, translates r to a ;1JS®.4

14 = {tocode(S(d))

ifd e ZpStm

skip otherwise
trirzf =1r1 § 1raf
Urilr2§ = if (®) {r1J € wWS® ? Lr1 J : skip}
else {{raf € pJS® 2 {ra | : skip}
UD)*§ =while (®) {1rf € pJS® ? 1r§ :skip}
In the base case (first line), we check if d is a partial statement,
namely if d € Zpstn. If so, it is returned as code (abusing notation of
tocode), otherwise skip statement is returned. In the case of {rirzJ,
the function concatenates the two programs inductively generated.
In the case of [ri||r2{, we need to emulate the non-deterministic
execution of both the operands. Here comes to play ®, previously
introduced. In particular, we return an if statement where the if-
true body is replaced with {r1 | if it is executable, skip otherwise,
and the if-false body is replaced with [rz |, if it is executable, skip
otherwise. The boolean guard of the if statement is @. It is worth
noting that we need to check the executability of]r; | and]r2f,
since the true and false bodies must be 1JS® executable. We treat
in a similar way the case of {(r)*{: in order to guarantee soundness,
the uJS® program]r{ must be executed an undefined number of
times, hence, we build a while loop program, where the guard is ®.

The code synthesis from the regular expression rys is the ;JS®
program reported in Fig. 8.

The last step consists of generating a CFG on which we can
recursively call our abstract interpreter. Hence, we call CFG on
the synthesized code, namely CrG(]rf). In our running example,
the CFG corresponding to the program reported in Fig. 8 is Gqg =
CrG(]rgs|) reported in Fig. 9, where the labels of consecutive true
edges are omitted. Note that the CFG of while(x; corresponds to
the CFG of skip (right-most path in Fig. 9).

Putting all the sub-procedures together, we can define the pro-
duce CFGGen, that takes as input an automaton A over Xpsty and
generates a CFG , as CFGGen(A) = Cra({Regex(A)f).

Finally, we have to prove soundness, proving that the output
CFG contains the computation of all the executable strings that are

4We denote by b ? tt: ff the inline conditional construct, namely if b is true do tt,
ff otherwise.

SAC 20, March 30-April 3, 2020, Brno, Czech Republic

if (®) {
if (@) {
if (@) {
X = x + 1
} else {
skip
}
} else {
while (x > 5) {
X = x + 1; y = x
}
3
} else {
X = x + 1;
while (®) {
y = 10; x = x + 1
3
}
Figure 8: ;1JS® program of |rys|.

Figure 9: CFG Gys generated by CFGGen module

in the starting FA. In particular, next lemma shows that the CFG
generated by CFG(rf) contains all the computations of executable
strings recognized by r.

LEmMA 4.2. Givenr € RE, let G, =2 Crc((rf), then V5§ € Z(r),
vm* e M*. 311 C Paths(G,) s.t.

[tocode(S(8)]* m* < | J [x]* m*
mell
Finally, next theorem tells us that any executable string collected
by the analysis is kept in the final generated CFG.

THEOREM 4.3. Let s € SExp, let As be the FA recognizing the
strings associated with s, then Vo € £ (As) @ pJS,¥ m* € M*, 31T €
Paths(Gs), Gs = CFGGen(StmSyn(As)). [o]* m* € U e [7]* m*.

5 EVALUATING THE ANALYZER

We have implemented the pJS static analyzer (available at https:
//github.com/SPY-Lab/mujs-analyzer) described in this paper, test-
ing it on some significant eval programs in order to highlight the
strengths and the weaknesses of the presented analyzer. In this
section, we report the most significant cases in order to evaluate
our approach. Moreover, we are currently integrating our approach
upon TAJS static analyzer [23]. The proposed prototype shows
that it is possible to design and implement an efficient sound-by-
construction static analyzer based on abstract interpretation for
self modifying code. In order to measure quality and precision of
our abstract interpreter we tackle the following questions:

https://github.com/SPY-Lab/mujs-analyzer
https://github.com/SPY-Lab/mujs-analyzer

SAC 20, March 30-April 3, 2020, Brno, Czech Republic

Code fragment Exe” output

str = "x=";

if (B) true X true
str = str + "f";

else £0 80

str = str + "g
eval(str + "();");

",
B

if (B)
str = "if";
else
str = "while";
str = str + "(x<3){x++;3}"
eval(str);

str = "a=0;b=0;";
while (i++ < 100)

if (B)

str = str + "a++;";

else

str = str + "b++;";
eval(str);

true

Table 1

Q1: Does the analyzer handle efficiently string-to-code state-
ments (eval), even in presence of join points?
Q2: Does the analyzer handle nested calls to eval?

In order to answer to Q1 and Q2, we evaluate the precision of our ap-
proach discussing, in the next sections, several eval usages inspired
by real-world JavaScript applications. Finally, we conclude the eval-
uation by comparing our analyzer with TAJS [22, 23](version 0.9-8).

eval of dynamic-generated string (Q1). As observed before, the
proposed architecture allows the analyzer to handle non-standard
uses of eval, where the eval input string is dynamically manip-
ulated. In the following, we describe three significant witnesses,
allowing us to discuss about the precision of the analyzer.

Consider the first row of Tab. 1, supposing that the boolean guard
B is unknown; hence both the branches must be taken into account,
implying that the statements executed by eval may be either x=f ()
or x=g(). We approximate the code potentially executed by eval
with the CFG reported in the first row, second column, in Tab. 1
(Exe* output). Concerning precision, the synthesized CFG is precise
since it precisely contains the two possible executions.

Consider a more challenging example, provided in the second
row of Tab. 1. The boolean value of the guard is unknown, hence
eval may execute either an if or awhile statement. In this case, the
code that will be potentially executed is not a simple combination
of syntactic language structures. Hence, we believe this is an harder
case to tackle for existing analysis tools. The approximation of the
potentially executed code is reported in the second row. As before,
the generated CFG is precise since it contains the two possible
programs to execute.

Finally, in the last row of Tab. 1, the eval input string is built
after a while statement join point. In this case, we also need to ap-
proximate the while loop execution, in order to avoid divergence.
The number of loop iterations is unknown due to the unknown

Vincenzo Arceri and Isabella Mastroeni

str = "x=5";

while (i++ < 3)
str += "5";

eval(str + ";");

5
X = ’
Lorosdio
Figure 10: Agtr s.t. L (Astr) = {x=5" | n > 0}

value of i before the loop. Hence, we need to apply a widening
operator to ensure termination (Sect. 3.1). In the example we use
the widening operator V3, , allowing us to over-approximate the
value of str by the regex a=0;b=0; (a++; | |b++;)*. It is possible to
tune string approximation precision, and therefore to obtain dif-
ferent code approximations, by changing the widening operator
used in the analysis. The corresponding CFG , over-approximating
the code executed by eval, is shown in the last row. In this case,
the CFG generation process adds further imprecision due to both
the widening (generating cyles in the FA) and the way a CFG is
generated starting from a star regex.

Nested eval calls (Q2). As explain in Sect. 3.3, the soundness and
termination of our approach is guaranteed by nested call widening.
Note that different results can be obtained from the analysis by
tuning this parameter. In order to show how the analysis behaves
in these situations, let us consider two significant examples: the
first example is a terminating sequence of nested eval calls, while
the second one is an infinite one. Consider the fragment below.

a=0;
str = "a++;if(a < 3){eval(\"a++;\" + str);}"
eval(str);

As long as a is less than 3, the program concatenates "a++; " with
str, while, when a becomes greater then or equal to 3, the eval call
returns, closing the sequence of nested calls. Clearly, the analysis re-
sult depends on the value of the nested call widening: if it is greater
than or equal to 3, no loss of precision occurs during the analysis,
handling precisely and efficiently the whole sequence of nested
eval calls. Otherwise, the analysis gives up, returning the T abstract
state (i.e., all the possible variables evaluated to T) as explained
in Sect. 3.3. In this way, while preserving soundness, the analysis
may continue on the code after the eval call causing the nested call
sequence, still able to get significant information about the program.
Indeed, the T abstract string value is modeled by the FA recognizing
>*, making the analyzer able to trace string manipulations also of
unknown (set to T) variables. This is an important plus value of
our analyzer, since most of the existing static analysis tools simply
stuck the execution when a non-handled case occurs, returning no
useful analysis information. Next code fragment shows an example
of non-terminating sequence of nested eval calls. In this case, inde-
pendently from the choice of the nested call widening, the static
analyzer has to give up because the program diverges.

a=0; str = "a++;"

str = str + "if(a<3){str = \"a++\" + str;} eval(str);";

eval(str);
In order to be sound, a T abstract state is returned. Some techniques

to detect as precisely as possible the presence of infinite nested
eval call sequences can be studied and involved into the analyzer.
This would define a smart widening technique for approximating
nested eval calls for tuning the precision of the analysis in these
situations, and it surely deserves further investigation.

A Sound Abstract Interpreter for Dynamic Code

5.1 Limitations

As shown in the previous sections, the proposed abstract interpreter
is able to precisely answer about several eval patterns, even in pres-
ence of join points. Anyway, for some cases, even our abstract
interpreter is not able to derive a CFG that over-approximates the
eval input string. Consider the fragment reported in Fig. 10a, as-
suming that the value of i is unknown. Moreover, consider to apply
V2 in the while-loop. In Fig. 10b, we report the FA abstracting the
eval input, where the cycle in the FA is due to the application of
the widening V2, to ensure termination. In this case, our analyzer
can not return a CFG that over-approximates the code that may be
concretely executed: the hypothetical CFG could be infinite since
it should consider any possible assignment to x of any possible
number formed by sequences of 5 (i.e., x=5;, x=55;,x=555;...). In
general, our analyzer fails to construct a CFG that approximates
the code that may be concretely executed when the cycles in the FA
abstracting the input value of eval do not repeat valid statements,
as in the example. In order to preserve soundness, when an eval
statement occurs, our analyzer checks whether the input FA con-
tains cycles that do not repeat a valid statement; if so, top abstract
state is returned.

5.2 Comparison with TAJS

In [22], the authors introduce an automatic code rewriting tech-
nique removing eval constructs in JavaScript applications, showing
that, in some cases, eval can be replaced by an equivalent JavaScript
code without eval. This work has been inspired by [30] showing
that eval is widely used. In particular, the authors integrate a refac-
toring of the calls to eval into TA]JS. It performs inter-procedural
data-flow analysis capturing whether eval input expression eval-
uate to constant values. If so, eval call can be replaced with an
eval-free alternative code. It is clear that code refactoring is possi-
ble only when the abstract analysis recognizes that the arguments
of eval are constants. Moreover, they handle the presence of nested
eval by fixing a maximal degree of nesting, but in practice they set
this degree to 1, since, as they claim, it is not often encountered
in practice. The solution we propose allows us to go beyond con-
stant values and refactor code also when the arguments of eval are
not constants. We have identified three particular classes of eval
programs depending on some features of the analyzed program
which allow us to underline the differences between TAJS and our
prototype. We report three significant examples in Tab. 2, where we
summarize the comparison with TAJS. The first class of tests con-
sists in programs where the string variables collect only one value
during execution, i.e., they are constant strings. A witness of this
class of programs is provided in the first row of Tab. 2, where the
string value contained in y is constant. In this case, both, TAJS and
our analyzer, are precise since no loss of information occurs during
both the analyses. By using the value of y as input of eval, we obtain
exactly the statement x=x+1; since Exe?, in this case, behaves as
the identity function. TAJS performs the uneval transformation and
executes the same statement.

The second class of tests consists in programs where there are
no constant strings, namely strings whose value before eval is not
precisely known and it is approximated by a set of potential string
values. An example of this class is reported in the second row of

SAC 20, March 30-April 3, 2020, Brno, Czech Republic

P [TAJS result [Exe#(Ay) result
y="x=x+1;"; x=x+1;
=x+1;
eval(y); et
if (x > @)
y="a=a+1;"; Analysis
else Limitation
y="b=b+1;"; Exception
eval(y);
y=.uu;
while (x f H o " Analysis
y =y ot txExH1 - .
_ Limitation
X=x+1; .
Exception
eval(y);

Table 2: Comparison with TAJS

Tab. 2, which is a simplification of Ex. 3.1. In this case, since we
do not have any information about x, we must consider both the
branches, meaning that before eval we only know that y is one
value between "a=a+1" and "b=b+1". If we analyze this program in
TA]JS, the value of y before the eval call is identified as a string, since
TAJS does not perform a collecting semantics, and when it loses
the constant information it loses the whole value, leading to an
exception in TAJS analysis when eval is met. On the other hand, our
analyzer keeps the least upper bound between the stores computed
in each branch, obtaining the abstract value for y modeled by the
FA Ay recognizing the language {a=a+1;,b=b+1;}. Afterwards, our
analyzer returns and analyzes the sound approximation of the
program passed to eval reported in the second row.

In the last class of examples, the string that will be executed is
dynamically built at run-time. In the example provided in Tab. 2, the
dynamically generated string is x=x+1; (x=x+1;)*. In this case, as
it happened before, TAJS loses the value of y and can only identify
y as a string. This means that, again, eval makes the analysis stuck,
throwing an exception. On the other hand, our analyzer performs
a sound over-approximation of the set of values computed in y.
In particular, the analysis, in order to guarantee termination, and
therefore decidability, computes widening instead of least upper
bound between FA, inside the loop. This clearly introduces impreci-
sion, since it makes us lose the control on the number of iterations.
In particular, applying V3, we compute a FA Ay strictly containing
the concrete set of possible string values, recognizing the regex
x=x+1; (x=x+1;)*. The presence of possible infinite sequences of
x=x+1; is due to the over-approximation induced by the use of
widening operator on FA. Nevertheless, the widening parameter
can be tuned in order to get the desired precision degree of the anal-
ysis: The higher is the parameter, the more precise and costly the
analysis is. The CFG extracted from Ay is reported in the third row.

6 RELATED WORK AND CONCLUSIONS

The analysis of strings is nowadays a common practice in program
analysis due to the widespread use of dynamic languages [10, 16, 25,
27, 32, 36]. The use of symbolic objects in abstract domains is also
not new (see [14, 20, 33]) and some works explicitly use transducers
for string analysis in script sanitization [21, 36], all recognizing that
specifying the analysis in terms of abstract interpretation makes it
suitable to potential combinations with other analyses, providing a

SAC 20, March 30-April 3, 2020, Brno, Czech Republic

better potential in tuning accuracy and costs. None of these works
use string analysis for analyzing string-to-code statements. We
already introduced TAJS [22], but other JavaScript static analyzers
have been developed, such as JSAI [24] and SAFE [29]. They look
for a flexible, configurable and tunable tool focusing on context-
sensitiveness, heap-sensitiveness [24] and loop-sensitiveness [29].
Anyway they do not explicitly mention solutions to analyze string-
to-code statements. TamiFlex [7] synthesizes a program at any eval
call by considering the code that has been executed during some
(dynamically) observed execution traces. The static analysis can
then proceed with the so obtained code without eval. It is sound
only w.r.t. the considered execution traces, producing a warning oth-
erwise. Static analysis for a PHP core (ignoring eval-like primitives)
has been developed in [6]. Static taint analysis keeping track of val-
ues derived from user inputs has been developed for self-modifying
code by partial derivation of the CFG [34]. The approach is limited
to taint analysis, e.g., for limiting code-injection attacks. Staged
information flow for JavaScript in [11] with holes provides a condi-
tional (a la abduction analysis in [19]) static analysis of dynamically
evaluated code. Symbolic execution-based static analyses have been
developed for scripting languages, including string-to-code state-
ments, paying the introduction of false negatives [35]. We are not
aware of effective general purpose sound static analyses handling
self-modifying code for dynamic languages. On the contrary, a
huge effort was devoted to bring static type inference to object-
oriented dynamic languages (e.g., [1] for Ruby) but with a different
perspective: Bring into dynamic languages the benefits of static ones.
Our approach is different: Bring into static analysis the possibility of
handling dynamically mutating code. A similar approach is in [2].
The idea is to extracting a code representation which is descriptive
enough to include most code mutations by a dynamic analysis, and
then reform analysis on a linearization of this code. On the seman-
tics side, since the pioneering work on certifying self-modifying
code in [9], the approach to self-modifying code consists in treating
instructions as regular mutable data structures, and to incorporate
a logic dealing with code mutation within a la Hoare logics for
program verification.

This paper attacks an extremely hard problem in static program
analysis: Analyzing dynamically mutating code in a meaningful
and sound way. This provides the very first proof of concept in
sound static analysis for self-modifying code based on bounded
reflection for a high-level scripting language. Our main contribu-
tion is in proposing an innovative approach for designing sound
static analyzers for string-to-code statements. The main idea is to
analyze strings by approximating them as FA. When eval is met, the
FA modeling its input is analyzed in order to approximate its exe-
cutable sub-language, namely the sub-language of all the executable
statements at that program point. The executable sub-language is
then used for building a CFG whose semantics soundly approxi-
mate the semantics of what is concretely executed by eval. In this
way we can recursively call the same abstract interpreter on the
synthesized code. Once the recursive call returns we continue the
standard analysis. The approach we propose is, in this sense, a truly
dynamic static analyzer, keeping the analysis going even when
code is dynamically built. Finally, we are currently implementing
a prototype of this abstract interpreter for JavaScript, built upon

Vincenzo Arceri and Isabella Mastroeni

TAJS, in order to prove that such a sound abstract interpreter for
dynamic languages can be actually built and tested.

REFERENCES

[1] AN,].D., CHAUDHURL, A., FOSTER, J. S., AND Hicks, M. Dynamic inference of
static types for Ruby. In POPL’11 (2011).

[2] ANCKAERT, B., MAaDOU, M., AND BosscHERE, K. D. A model for self-modifying
code. In Information Hiding (2006).

[3] ARcER1, V., AND MAFFEIS, S. Abstract domains for type juggling. Electr. Notes
Theor. Comput. Sci. 331 (2017).

[4] ARCERI, V., AND MASTROENT, L. Static program analysis for string manipulation
languages. In VPT’19 (2019).

[5] BEessky, A., Brock, K., CHELF, B., CHou, A., FuLTON, B., HALLEM, S., GROS, C.,
Kamsky, A., McPEAK, S., AND ENGLER, D. R. A few billion lines of code later:
using static analysis to find bugs in the real world. Commun. ACM 53, 2.

[6] BIGGAR, P., AND GREGG, D. Static analysis of dynamic scripting languages. Tech-
nical report, Department of Computer Science, Trinity College Dublin, 2009.

[7] BopDEN, E., SEWE, A., SINSCHEK,]., OUESLATI, H., AND MEzINI, M. Taming
reflection: Aiding static analysis in the presence of reflection and custom class
loaders. In ICSE’11 (2011).

[8] Brzozowskl, J. A. Derivatives of regular expressions. 7. ACM 11, 4 (1964).

[9] Car H., SHAO, Z., AND VAYNBERG, A. Certified self-modifying code. In PLDI
(2007).

[10] CHRISTENSEN, A. S., MOLLER, A., AND SCHWARTZBACH, M. I. Precise analysis of
string expressions. In SAS’03 (2003).

[11] CuuGH, R., MEISTER, J. A., JHALA, R., AND LERNER, S. Staged information flow
for JavaScript. In PLDI (2009).

[12] Cousor, P. Types as abstract interpretations (invited paper). In POPL’97 (1997).

[13] Cousor, P., AND CousoT, R. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
POPL’77 (1977).

[14] Cousor, P., AND Cousor, R. Formal language, grammar and set-constraint-based
program analysis by abstract interpretation. In FPCA’95 (1995).

[15] Cousor, P., AND HALBWACHS, N. Automatic discovery of linear restraints among
variables of a program. In POPL’78 (1978).

[16] Dom, K., Kim, H., AND ScHMIDT, D. A. Abstract parsing: Static analysis of dynam-
ically generated string output using lr-parsing technology. In SAS’09 (2009).

[17] DrAPE, S., THOMBORSON, C., AND MAJUMDAR, A. Specifying imperative data
obfuscations. In ISC’07 (2007).

[18] D’SiLva, V. Widening for automata. Diploma Thesis, Universitat Zurich, 2006.

[19] GracoBazzr, R. Abductive analysis of modular logic programs. 3. Log. Comput. 8,
4(1998).

[20] HEINTZE, N., AND JAFFAR, J. Set constraints and set-based analysis. In PPCP’94

(1994).

HOOIMEIJER, P., LivsHITS, B., MOLNAR, D., SAXENA, P., AND VEANES, M. Fast and

precise sanitizer analysis with BEK. In USENIX’11 (2011).

JENSEN, S. H., JoNssoN, P. A., AND M@LLER, A. Remedying the eval that men do.

In ISSTA’12 (2012).

JENSEN, S. H., MOLLER, A., AND THIEMANN, P. Type Analysis for JavaScript. In

SAS’09 (2009).

[24] Kasuyap, V., DEWEY, K., KUEFNER, E. A., WAGNER, J., GIBBONS, K., SARRACINO,
J., WIEDERMANN, B., AND HARDEKOPF, B. JSAL: a static analysis platform for
javascript. In FSE’14 (2014).

[25] Kim, H., DoH, K., AND ScHMIDT, D. A. Static validation of dynamically generated
HTML documents based on abstract parsing and semantic processing. In SAS’13
(2013).

[26] MavroGIANNOPOULOS, N., KissERLIL, N., AND PRENEEL, B. A taxonomy of self-
modifying code for obfuscation. Computers & Security 30, 8 (2011), 679-691.

[27] MINAMIDE, Y. Static approximation of dynamically generated web pages. In
WWW’05 (2005).

[28] NitLson, F., NieLson, H. R., AND HANKIN, C. Principles of program analysis.
Springer, 1999.

[29] Park, C., AND RYU, S. Scalable and precise static analysis of javascript applications
via loop-sensitivity. In ECOOP’15 (2015).

[30] RicHARDS, G., HAMMER, C., BURG, B., AND VITEK, J. The eval that men do - A
large-scale study of the use of eval in javascript applications. In ECOOP’11 (2011).

[31] Sk, H., WiLHELM, R., AND HACK, S. Compiler Design - Analysis and Transfor-
mation. Springer, 2012.

[32] THIEMANN, P. Grammar-based analysis of string expressions. In TLDI'05 (2005).

[33] VENET, A. Automatic analysis of pointer aliasing for untyped programs. Sci.
Comput. Program. 35, 2 (1999), 223-248.

[34] WaNg, X., JH1, Y., ZHU, S., AND L1u, P. Still: Exploit code detection via static taint
and initialization analyses. In ACSAC (2008).

[35] XIE, Y., AND AIKEN, A. Static detection of security vulnerabilities in scripting
languages. In USENIX "06 (2006).

[36] Yu, F., ALKHALAF, M., AND BurTaN, T. Patching vulnerabilities with sanitization
synthesis. In ICSE’11 (2011).

™ [
& -

&
&

	Abstract
	1 Introduction
	2 The analysis ingredients
	2.1 The language: `3́9`42`"̇613A``45`47`"603AJS
	2.2 Analyzing `3́9`42`"̇613A``45`47`"603AJS programs

	3 Dynamic language analysis
	3.1 Abstracting data
	3.2 The analyzer architecture
	3.3 Abstracting sequences of @eval@ nested calls

	4 Approximating executable code
	4.1 StmSyn: Extracting the executable language
	4.2 CFGGen: Control-flow graph generation

	5 Evaluating the analyzer
	5.1 Limitations
	5.2 Comparison with TAJS

	6 Related work and conclusions
	References

