
Static Detection of Untrusted Cross-Contract
Invocations in Go Smart Contracts

Luca Olivieri
Ca’ Foscari University of Venice

Venice, Italy
luca.olivieri@unive.it

Luca Negrini
Ca’ Foscari University of Venice

Venice, Italy
luca.negrini@unive.it

Vincenzo Arceri
University of Parma

Parma, Italy
vincenzo.arceri@unipr.it

Pietro Ferrara
Ca’ Foscari University of Venice

Venice, Italy
pietro.ferrara@unive.it

Agostino Cortesi
Ca’ Foscari University of Venice

Venice, Italy
cortesi@unive.it

Fausto Spoto
University of Verona

Verona, Italy
fausto.spoto@univr.it

ABSTRACT
A blockchain is a trustless system in an environment popu-
lated by untrusted peers. Code deployed in blockchain as a
smart contract should be cautious when invoking contracts
of other peers as they might introduce several risks and
unexpected issues. This paper presents an information flow-
based approach for detecting cross-contract invocations to
untrusted contracts, written in general-purpose languages,
that could lead to arbitrary code executions and store any
results coming from them. The analysis is implemented in
GoLiSA, a static analyzer for Go. Our experimental results
show that GoLiSA is able to detect all vulnerabilities related
to untrusted cross-contract invocations on a significant bench-
mark suite of smart contracts written in Go for Hyperledger
Fabric, an enterprise framework for blockchain solutions.

CCS CONCEPTS
• Software and its engineering → Automated static analysis;
Software verification; Formal software verification.

KEYWORDS
Cross-contract Invocation, Delegate Call, External Contract
Call, Static Analysis, Abstract Interpretation, Blockchain,
Distributed ledger technology, Smart Contracts, CWE-829,
SWC-112

ACM Reference Format:
Luca Olivieri, Luca Negrini, Vincenzo Arceri, Pietro Ferrara,
Agostino Cortesi, and Fausto Spoto. 2025. Static Detection of
Untrusted Cross-Contract Invocations in Go Smart Contracts. In
The 40th ACM/SIGAPP Symposium on Applied Computing (SAC
’25), March 31-April 4, 2025, Catania, Italy. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3672608.3707728

This work is licensed under a Creative Commons Attribution 4.0
International License.
SAC ’25, March 31-April 4, 2025, Catania, Italy
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0629-5/25/03.
https://doi.org/10.1145/3672608.3707728

1 INTRODUCTION
In a blockchain, smart contracts can interact with other de-
ployed code by using Cross-Contract Invocations (CCIs for
short), namely delegate calls or external contract calls. This
mechanism promotes interoperability by allowing coopera-
tion and exchange of information and services within the
blockchain. Furthermore, achieving smart contract interop-
erability is also a crucial point for international regulations
such as the European Data Act [37, 38]. However, a naive
implementation of CCIs could lead to untrusted invocations
(i.e., CCI where the callee or parameters can be controlled by
users) exposing the contracts to critical issues such as code
injection and execution of arbitrary code. This might have
severe consequences, ranging from loss of assets, cryptocur-
rencies, or more generally fungible and non-fungible tokens,
to denial of service [3, 5].

The novel contribution of this paper is the design of a
two-phase analysis that detects Untrusted Cross-Contract In-
vocations (UCCIs) by using information-flow techniques: (i)
to detect flows from untrusted user inputs to cross-contract
invocations, and (ii) to detect flows from untrusted cross-
contract execution to blockchain storage. To the best of our
knowledge, there are currently no analyses covering these is-
sues for general-purpose languages, such as Go. Furthermore,
we implemented and evaluated our approach in GoLiSA, a
static analyzer based on abstract interpretation that supports
the analysis of several blockchain frameworks written in Go,
such as Hyperledger Fabric1 (from now on HF), Cosmos
SDK2, and Tendermint Core (recently rebranded as Ignite3).
The evaluation is performed on a benchmark suite of existing
smart contracts retrieved from public GitHub repositories,
and shows, empirically, that our approach can successfully
identify UCCIs.

Paper structure. Section 2 provides an overview of UCCIs
in blockchain software. Section 3 and Section 4 present the
design of our core contribution for detecting issues related
to UCCIs and its implementation in GoLiSA. Section 5 ex-
perimentally evaluates the proposed analysis implemented in

1https://www.hyperledger.org/use/fabric
2https://v1.cosmos.network/sdk
3https://ignt.com/

https://orcid.org/0000-0001-8074-8980
https://orcid.org/0000-0001-9930-8854
https://orcid.org/0000-0002-5150-0393
https://orcid.org/0000-0002-4678-933X
https://orcid.org/0000-0002-0946-5440
https://orcid.org/0000-0003-2973-0384
https://doi.org/10.1145/3672608.3707728
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3672608.3707728
https://www.hyperledger.org/use/fabric
https://v1.cosmos.network/sdk
https://ignt.com/

SAC ’25, March 31-April 4, 2025, Catania, Italy L. Olivieri et al.

GoLiSA on a data set of existing smart contracts. Section 6
presents related works. Section 7 concludes the paper.

2 UNTRUSTED CROSS-CONTRACT
INVOCATIONS

CCIs allow smart contracts to execute the code of other con-
tracts deployed in blockchain, by calling specific instructions.
In general, these instructions require two distinct parameters
that can be hard-coded or parameterized into the calling
contract: the contract to call (e.g., contract name, its address
within the blockchain) and optional data to process (e.g., the
method to execute, its parameters, and tokens to transfer).
CCIs are a powerful feature that can be involved in different
use cases such as:

∙ Contract interactions: the primary purpose of CCIs is
to communicate with other contracts for exchanging
data, assets, and cryptocurrencies, as is often the case
when communicating between different decentralized
autonomous organizations (DAOs);

∙ Libraries: CCIs allow to build libraries of shared code
that multiple contracts can access, hence promoting
code modularity and reducing complexity; this can also
help decrease deployment costs when those are related
to the contract’s size;

∙ Contract Size Limit: some blockchains, such as Ethereum,
impose a limit on the size in bytes of each smart con-
tract [4], and those exceeding the limits are not allowed
to be deployed; CCIs can be used to split a large con-
tract into smaller ones that interact with each other,
therefore overcoming this limitation;

∙ Proxy Upgrade Pattern: as the code of deployed smart
contracts is immutable, the proxy pattern [29, 41] can
be used to circumvent this limit, by allowing smart
contracts to be upgraded to include new features and
patches, after they have been deployed: by partition-
ing the business logic across several contracts and by
making them communicate through a proxy contract,
the application logic can be updated by specifying a
different target address in CCIs.

Despite the benefits derived from the adoption of CCIs,
their naive use can introduce UCCIs that a malicious agent
can exploit to inject arbitrary values that can lead to un-
trusted code execution by the blockchain (see CWE-829 [10]
and SWC-112 [48]), such as extortionware attacks [3, 5]. An
untrusted use of CCIs happens when the contract to call is
parameterized and directly depends on the program input
(i.e., data from outside the blockchain) that, in general, is
untrusted: users can provide it anonymously.

Consider for instance the attack schema depicted in Fig. 1.
A blockchain user might naively deploy a contract containing
a UCCI and use it to handle assets. After contract deploy-
ment, its source code will remain exposed in the blockchain.
An attacker could discover the vulnerability of the contract
and exploit it to take over the assets managed by that con-
tract. Specifically, the attacker could redirect the CCI to

his own malicious contract, in order to demand a ransom or
permanently take possession of the stolen assets.

2.1 Towards UCCI Detection for General
Purpose Languages

According to Olivieri et al. [32], general-purpose languages
(GPLs), such as Go, are supported by several blockchain
frameworks for the development of smart contracts. Although
they do not enjoy the same popularity as domain-specific
languages (e.g. Solidity [2] for Ethereum), they are widely
applied in industrial solutions offering greater flexibility, ex-
tensive libraries, and better tooling for scalability and inte-
gration with existing enterprise systems, as well as to a lesser
extent by reducing the learning curve for developers.

GPLs may involved in different ways in smart contract
development and they can be classified in: full, restricted, and
meta-programming [32] languages. In the first two cases, the
smart contract code is written in a GPL and executed “as is"
in the blockchain. The difference is that the restricted ones are
limited to a subset of language functionalities or instructions
of the GPL. In the third case, the GPL is used at a high-level
but then compiled into a low-level domain-specific language
for the target blockchain.

Currently, Go is mainly used as a full language leaving
developers the freedom to use all its functionalities and in-
structions.

The adoption of full languages in smart contracts and
blockchain framework represents a challenge for verifica-
tion [32, 39]. In particular, they may not provide the same
level of security constraints offered by domain-specific lan-
guages for blockchain (e.g. determinism, avoid wrap-around
semantics, . . .). Moreover, the adoption of external libraries
or frameworks may increase the complexity of the analy-
sis and the resource consumption potentially affecting the
precision of analysis results.

Moreover, blockchain frameworks that use such languages
are often rely on specific APIs, such as for data storage
in blockchain, for sending transaction responses, and for
managing the blockchain components in a versatile way. CCIs
fall in this category: invocations of functions provided by the
framework lead to the execution of other contracts. Given the
presence of such explicit calls, it is necessary to reason about
two distinct program behaviors: (i) cross-contract invocation
from untrusted input and (ii) storage of data returned from
untrusted cross-contract executions.

Fig. 2 reports a snippet of a Go smart contract for HF,
exemplifying an extortionware attack scenario. At line 2, the
input to the transaction request is retrieved through the
function GetStringArgs. Line 4 stores the first element of
the input in variable contract, later used at line 8 as the
receiver of a CCI with the arguments contained in queryArgs:
the method to invoke and the asset to pass to the method.
As the user controls variable contract, there is a security
problem since the user can send execution requests to any
deployed contract, including a contract whose implemen-
tation of SetAssetOwnership is not that expected by the

Static Detection of Untrusted Cross-Contract Invocations in Go Smart Contracts SAC ’25, March 31-April 4, 2025, Catania, Italy

BLOCKCHAIN

AttackerBlockchain User

Malicious
Contract

Contract

1) contract deployment

2) vulnerability scouting

3) contract deployment

4) exploit UCCI vulnerability

5) move asset

9.b) retrieve asset

9.a) asset release
8) request for asset retrieve or release

6) payment request (extortion)

7) payment

Figure 1: Extortionware attack model exploiting UCCIs [3, 5].

1 // Get the args from the transaction
2 args := stub. GetStringArgs ()
3

4 contract := args [0]
5 // [...]
6 queryArgs [0] = " SetAssetOwnership "
7 queryArgs [1] = myasset
8 response := stub. InvokeChaincode (contract ,

queryArgs , "main - channel ")
9 stub. PutState (" owner ", response . Payload)

Figure 2: Simplified smart contract for HF, featuring a UCCI.

developer of the snippet in Fig. 2. For instance, the injected
SetAssetOwnership method could unexpectedly change the
ownership of myasset. As the untrusted input can change
the contract target of the CCI, this is an example of cross-
contract invocation from untrusted input. Finally, at line 9,
the execution result is retrieved from (response.Payload)
and is stored in the blockchain through PutState, which
allows one to perform a data-write proposal of blockchain
global state, leading to a blockchain data storage from un-
trusted cross-contract executions. Note that, upon successful
execution, the change in ownership that is stored through
PutState becomes part of the blockchain global state.

3 UCCI DETECTION BY TAINT ANALYSIS
Taint analysis [8, Section 47.11.8] is an instance of infor-
mation flow analysis that allows one to detect if untrusted
information explicitly flows from some source to critical pro-
gram points, called sinks. It means that one can logically
split program variables into two sets: tainted variables T,
that is, those that an external attacker can tamper; and its

dual set of clean variables C. At the start of the analysis, T
contains the sources only, that is, the variables that can be
directly modified by the attacker. The analysis iteratively
moves variables from C to T whenever one is assigned to a
value computed by using at least a variable in T, and from T
to C whenever one is assigned to a value computed by using
a sanitizer (that is, functions that vet the tainted values,
therefore making sure that there is no potential influence in
the result). Consequently, the analysis computes, for each
program point, the set of variables containing values that
can be controlled by the attacker. With such information,
one can check if a sink receives a value computed by using
at least a variable in T, thus detecting potential security
vulnerabilities. Taint analysis can be also applied with formal
method frameworks to provide several guarantees. Among
these, an important guarantee is soundness, i.e., the absence
of false negatives for a given property, which can be achieved
for instance by using abstract interpretation [7, 9] and over-
approximating program semantics [8]. Moreover, this generic
schema has been instantiated to detect many vulnerabilities
in real-world software (e.g., SQL injection [11, 53], privacy
issues [15, 17], IoT issues [28], non-determinism [36, 40], phan-
tom reads [34]), achieving significant practical results (see [13]
for an example).

Likewise, taint analysis can be applied to the detection of
UCCIs. In this paper, we design an analysis composed of two
phases to deal with the following taintedness problems:

∙ Phase 1: detection of untrusted cross-contract invoca-
tions. The analysis models input parameters given by
users through transactions as sources, and the parame-
ters of cross-contract calls specifying a contract as sinks;
in this way, it is possible to trace arbitrary input values

SAC ’25, March 31-April 4, 2025, Catania, Italy L. Olivieri et al.

within a smart contract and check if there are flows
that lead to cross-contract calls, possibly executing an
arbitrary contract;

∙ Phase 2: detection of untrusted blockchain storage from
untrusted cross-contract executions. The analysis mod-
els the cross-contract calls detected during phase 1 that
received untrusted input arguments as sources, and the
parameters of blockchain data-write proposal calls as
sinks; in this way, it is possible to trace the results of
untrusted executions within a smart contract and check
if there are flows that lead to the immutable storage of
this information through blockchain data-writes and
transaction response proposals.

Algorithm 1 Detection of issues related to UCCIs.
1: procedure UCCIAnalysis(program, framework)
2: alerts ← ∅

◁ Phase 1
3: sourcesP1← retrieveSourcesP1FromSignatures(program, framework)
4: sinksP1← retrieveSinksP1FromSignatures(program, framework)
5: if | sourcesP1 | > 0 ∧ | sinksP1 | > 0 then
6: resP1 ← taint(program, sourcesP1, sinksP1)
7: alerts ← getAlerts(resP1)

◁ Phase 2
8: sourcesP2← retrieveSourceP2FromTaintResultsP1(sinksP1, resP1)
9: sinksP2← retrieveSinksP2FromSignatures(program, framework)

10: if | sourcesP2 | > 0 ∧ | sinksP2 | > 0 then
11: resP2 ← taint(program, sourcesP2, sinksP2)
12: alerts ← alerts ∪ getAlerts(resP2)
13: return alerts

Algorithm 1 shows the high-level structure of the proposed
analysis. It requires only the program (i.e., the smart contract)
to analyze and specify the blockchain framework (e.g., HF, Cos-
mos SDK, Tendermint Core, . . .) on which it is based. The
algorithm starts from phase 1 (lines 3 − 7), by computing
sources and sinks. Typically, the full list of signatures related
to the methods for introducing arbitrary inputs (i.e., sources
of phase 1) and of the CCIs (i.e., sinks of phase 1) are always
known a priori and depend on the framework (e.g., see Table 1
for HF). Hence, at lines 3−4, retrieveSourcesP1FromSignatures
and retrieveSinksP1FromSignatures perform a signature match-
ing on the program statements to retrieve those matching
the signature list specific to the framework (they select only
sources and sinks that do appear in the given program) and
collect them in sourceP1 and sinksP1, respectively. At this
point, at lines 5 − 7, if there is at least a source and a sink
in the program, the algorithm runs a taint analysis to detect
UCCIs and generates alerts from the taint analysis result
resP1. Phase 2 (lines 8 − 12) can start only after phase 1,
because it requires its taint analysis information. Indeed, the
sources (i.e., UCCIs) for phase 2 are not known a priori as
they are computed at the end of phase 1 (line 6), i.e., they
are the sinks of phase 1 into which a tainted value has flowed.
Hence, at line 8, retrieveSourceP2FromTaintAnalysisResultP1
checks this and the interested statements are collected in
sourceP2. Regarding sinks for phase 2 (i.e., blockchain data-
write and transaction response proposals), they are always
known a priori and depend on the framework (e.g., see Ta-
ble 1 for HF). Then, they are also computed via signature
matching through the function retrieveSinksP2FromSignatures

1 // Get the args from the transaction

2 args := stub.GetStringArgs()

3

4 contract := args[0]

5 // [...]
6 queryArgs [0] = " SetAssetOwnership "
7 queryArgs [1] = myasset

8 response := stub. InvokeChaincode (contract , queryArgs ,

"main - channel ")

9 stub. PutState (" owner ", response.Payload)

(a) Phase 1
1 // Get the args from the transaction
2 args := stub. GetStringArgs ()
3

4 contract := args [0]
5 // [...]
6 queryArgs [0] = " SetAssetOwnership "
7 queryArgs [1] = myasset

8 response := stub.InvokeChaincode (contract , queryArgs , "

main - channel ")

9 stub. PutState (" owner ", response.Payload)

(b) Phase 2

Figure 3: Taint analysis results on the code snippet of Figure 2.

and the program statements collected in sinksP2 at line 9.
At lines 10 − 12, if there is at least a source and a sink in
the program for this phase, Algorithm 1 performs another
taint analysis to detect the storage and transaction response
where there is untrusted information coming from UCCIs and
collects the analysis alerts. Finally, at line 13, Algorithm 1
returns collected alerts to fill the analysis report, containing
the following information: (i) the potential flows of untrusted
data to a cross-contract invocation, and (ii) the potential
storage in the blockchain of data coming from an untrusted
cross-contract execution.

3.1 Running Example
Consider the code snippet of a HF smart contracts (also
known as chaincodes, the term used for HF’s code) in Figure 2.

In phase 1, Algorithm 1 detects GetStringArgs at line 2
and the parameters of InvokeChaincode at line 8 as source
and sink by signature matching, respectively. Subsequentially,
it performs taint analysis and propagates tainted values from
the source (see Figure 3a). At the end of the computation,
Algorithm 1 detects that variable contract is tainted when
it is used in the sink at line 8. Then, it issues an alarm
because an untrusted cross-contract invocation is detected
and sets the InvokeChaincode at line 8 as a source for the
phase 2. Note that, although response.Payload is tainted,
it is not possible to trigger an alarm blockchain data storage
from untrusted cross-contract execution because this phase
of the analysis tracks untrusted input propagation and not
untrusted execution results.

Static Detection of Untrusted Cross-Contract Invocations in Go Smart Contracts SAC ’25, March 31-April 4, 2025, Catania, Italy

Table 1: HF methods of interest for the detection of UCCIs.

shim.ChaincodeStubInterface’s Method Target Category
GetArgs return value Arbitrary Input
GetStringArgs return value Arbitrary Input
GetFunctionAndParameters return value Arbitrary Input
GetArgsSlice return value Arbitrary Input
GetTransient return value Arbitrary Input
InvokeChaincode parameters, return value CCIs
PutState parameters Data Storage
DelState parameters Data Storage
SetStateValidationParameter parameters Data Storage
PutPrivateData parameters Data Storage
DelPrivateData parameters Data Storage
PurgePrivateData parameters Data Storage
SetPrivateDataValidationParameter parameters Data Storage
Success parameters Transaction Response
Error parameters Transaction Response

In phase 2, the analysis detects InvokeChaincode as a
source at line 8 because contract was tainted at the end of
phase 1. Then, at line 9, it detects PutState as a sink by
signature matching. Hence, it performs the second round of
taint analysis (see Figure 3b). At the end of the computation,
the analysis detects that the variable response.Payload is
tainted and it issues an alarm because a blockchain data
storage from untrusted cross-contract execution is found.

4 IMPLEMENTATION IN GOLISA
We implemented Algorithm 1 inside GoLiSA4, an open-
source static analyzer for Go supporting several blockchain
frameworks. GoLiSA relies on LiSA [14, 30, 31] (Library
for Static Analysis), a modular framework for developing
abstract interpretation-based static analyzers.

4.1 Detection of Sources and Sinks in GoLiSA
The first step for taint analysis is the identification of the
sources and sinks of the target blockchain framework.

Currently, GoLiSA supports three different blockchain
frameworks, i.e., HF, Tendermint Core, and Cosmos SDK.
However, only HF natively provides smart contract APIs
written in Go. Other frameworks do not provide official APIs
for cross-contract invocations, although they may support
smart contract frameworks with custom or third-party im-
plementations. For the sake of simplicity, we cover only HF
but the same approach can be applied to any other smart
contract framework. Furthermore, as reported by the IBM
company, HF has become the unofficial standard for enter-
prise blockchain platforms [21].

Table 1 summarizes the Go APIs that we considered critical
for issues related to UCCIs: Method identify API functions;
column Target defines which portion of the function’s sig-
nature is being considered, i.e. return values for the sources
and the parameters for the sinks; column Category specifies
type of instruction. In particular, methods categorized as
Arbitrary input return the arguments of a transaction request
(i.e., user input) [18], i.e., they are considered as sources for
Phase 1 ; the method InvokeChaincode is the only standard
way to perform a CCIs in HF [18]; methods categorized as
Data Storage allow one to perform blockchain data-write
4Available at https://github.com/lisa-analyzer/go-lisa

proposals [18]; methods categorized as Transaction Response
are used for transaction response proposals [19, 20].

GoLiSA contains a full list of the signatures of these func-
tions, and it automatically annotates them before the analysis
begins. Annotations are used by the taint analysis to generate
tainted values whenever a call to a source is encountered.
Instead, the semantic checker that runs after the analysis
searches the program for calls targeting functions with at
least one parameter annotated as sink, and checks if the value
passed for it is tainted or not.

5 EXPERIMENTAL EVALUATION
This section presents the results of the application of GoLiSA’s
analysis for the detection of UCCIs on a set of smart contracts
written in Go and retrieved from public GitHub repositories.
Experiments have been performed on a machine equipped
with an AMD Ryzen 5 5600X 6-Core at 3.70 GHz, 16 GB
of RAM DDR4, 1 TB SSD (read 540MB/s, write 500MB/s),
running Windows 11 Pro 23H2, Open JDK version 20. During
the analysis, 8 GBs of RAM were allocated to the JVM.

The experimental evaluation can be replicated with the ma-
terials contained in the following repository: https://github.
com/lisa-analyzer/go-lisa/tree/sac2025.

5.1 Experimental Data Set (CCI)
We refer to the experimental data set as CCI. To collect
the experimental data set, we started by looking at existing
ones but, to the best of our knowledge, only the benchmark
proposed in Olivieri et al. [36] exists. However, it only contains
24 contracts implementing 41 CCIs. Then, in addition to
them, we retrieved other smart contracts from public GitHub
repositories. Specifically, we looked for the .InvokeChaincode(
keyword (i.e., call to a CCI in HF) and selected Go files using
that call.5 We considered all the 681 files from the query result
and the 24 from the benchmark of Olivieri et al. [36]. Then
we removed duplicates, that is, files with the same SHA256
checksum (code duplication is a widely adopted practice in
the blockchain industry [45]) and files that do not call the
InvokeChaincode function (in some cases it was mocked or
the instructions commented). In the end, CCI consists of 420
files for a total of 106277 Lines of Code (LoCs), containing
897 CCIs.

5.2 Experimental Results
We performed the UCCI analysis for all the files in CCI.
The execution required a total of 24 minutes and 59 seconds
(∼ 3.56 seconds on average per file). The results report 157
files where at least a warning is issued, 227 files where no
warning is raised, 36 files not analyzed due to failures (unsup-
ported operations, parsing errors, . . .) during the execution
of GoLiSA. The amount of reported warnings is 584. Table 2
shows details for each phase, where warnings are classified
as:
5https://api.github.com/search/code?q=
.InvokeChaincode(+language:Go&type=code&l=Go. Accessed:
03/04/2024.

https://github.com/lisa-analyzer/go-lisa
https://github.com/lisa-analyzer/go-lisa/tree/sac2025
https://github.com/lisa-analyzer/go-lisa/tree/sac2025
https://api.github.com/search/code?q=.InvokeChaincode(+language:Go&type=code&l=Go
https://api.github.com/search/code?q=.InvokeChaincode(+language:Go&type=code&l=Go

SAC ’25, March 31-April 4, 2025, Catania, Italy L. Olivieri et al.

Table 2: Warning details of the UCCI analysis results.

UCCI Analysis #TP #FP #EF #FN
Phase 1 277 0 4 0
Phase 2 301 0 2 0

∙ true positives (column #TP) if they refer to a detected
vulnerability that happens in at least one possible
contract execution (that is, there is an explicit source-
to-sink flow of tainted information)

∙ false positives (column #FP) if they refer to a vulnera-
bility that cannot happen in any contract execution,
but that is being considered due to over-approximation
in the analysis (that is, the explicit source-to-sink flow
never happens in any possible execution)

∙ external flows (column #EF) if they refer to a vulner-
ability cannot happen in any contract execution, but
that might manifest if a contract’s function is invoked
by another contract (that is, the warning is a false
positive when you only consider explicit source-to-sink
flows, but it becomes a true positive if the source is in
another contract)

Additionally, the table reports false negatives (column #FN)
as the number of vulnerabilities missed by the analysis.

5.2.1 Limits of the Evaluation. Although HF is largely used
in the industrial sector, its uses are related to the develop-
ment of permissioned and often private blockchains, meaning
that the related software is not publicly available or released
with open-source licenses. This greatly limits the creation
of a data set in comparison to public and permissionless
blockchains such as Ethereum, where it is typically possi-
ble to collect experimental artifact sets of large dimensions
simply by querying the public code deployed and available
in blockchain, such as in Wang et al. [55], where more than
three thousand distinct smart contracts are collected from
the Ethereum blockchain.

Regarding the limits of warning classification, another
criterion to classify true and false positives is to evaluate
the analysis results with the runtime environment, since
the static analysis is performed without the real execution
information [8, 49]. For instance, the interactions between
contracts from different channels in HF can be denied or
limited [51], thus some UCCIs could be mitigated or avoided
at run time depending on where the contracts are deployed.
However, in this specific case, we could not do this type
of check for the manual investigation since CCI has been
retrieved from public repositories where the source code is
statically stored and not deployed in a running blockchain
environment.

5.3 How to Classify Analysis Results
Below, we evaluate and classify the UCCI analysis results of
a few snippets of code taken from CCI. In the proposed exam-
ples (Figures 4, 5, 6), sources of Phase 1 and 2 are highlighted
with blue and black boxes, respectively; the sinks of Phase 1

and 2 are highlighted with red and brown boxes, respectively;
the tainted information propagated in the instruction sinks of
Phase 1 and 2 is highlighted in gray and orange, respectively.

5.3.1 True Positive. Contract chaincode_union_loan in Fig. 4,
a proof of concept implementation of bank loans in blockchain,
is an example of true positive found in CCI. Users call method
offer to offer a loan. GoLiSA detects a flow that leads
to an untrusted cross-contract invocation on tainted data
about loan participants. Namely, at line 5 of method Invoke,
GoLiSA considers GetFunctionAndParameters as a tainted
source, since it yields a function name and arguments pro-
vided as part of the transaction request, hence under user
control. This tainted data propagates through args to method
offer at line 7, reaching InvokeChaincode through variable
chainCodeToCall at line 15. GoLiSA issues a warning at
line 16 during the first phase, since the first parameter of
InvokeChaincode is tainted. Thanks to this warning, the
return value of the call is considered a source for the second
phase. The returned value, stored into variable response, is
used to build the error message errStr for the shim.Error
call at line 23, which GoLiSA considers as a sink for the sec-
ond phase. Thus, a warning is also raised at this line because
transactions with untrusted error responses should not be
approved and should not be able to reach the ordering stage
in HF.

1 func (t * UnionLoanChaincode) Invoke (
2 stub shim. ChaincodeStubInterface)
3 pb. Response {
4 function , args :=

stub.GetFunctionAndParameters()
5 if function == " offer " {
6 return t. offer (stub , args)

7 }
8 // [...]
9 }

10 func (t * UnionLoanChaincode) offer (
11 stub shim. ChaincodeStubInterface ,
12 args [] string) pb. Response {

13 // [...]

14 var chainCodeToCall = args[0]

15 // [...]

16 response := stub.InvokeChaincode (

chainCodeToCall , invokeArgs , "")

17 // [...]

18 errStr := fmt. Sprintf (" Failed to invoke
chaincode . Got error : %s", string (

response.Payload))

19 return shim. Error (errStr)

20 }

Figure 4: Simplified code from chaincode_union_loan.

5.3.2 True Negative. The sealtxnew contract from CCI, in
Fig. 5, is a proof of concept implementation of seal transaction
application for a trading blockchain. GoLiSA, correctly, does

Static Detection of Untrusted Cross-Contract Invocations in Go Smart Contracts SAC ’25, March 31-April 4, 2025, Catania, Italy

1 func (s * SealTX) Invoke (
2 stub shim. ChaincodeStubInterface)
3 pb. Response {
4 function , args :=

stub.GetFunctionAndParameters()
5 // [...]
6 switch function {
7 // [...]
8 case " querybykey ":
9 return s. querybykey (stub , args)

10 // [...]
11 }
12 }
13 func (t * SealTX) querybykey (
14 stub shim. ChaincodeStubInterface ,
15 args [] string) pb. Response {

16 // [...]

17 return stub. InvokeChaincode ("sealtx" ,
args4old , " tradechannel ")

18 // [...]
19 }

Figure 5: Simplified code from sealtxnew.

not raise any warning about untrusted cross-contract invoca-
tions. In fact, line 3 of method Invoke retrieves a tainted value
through the source GetFunctionAndParameters. This tainted
data propagates, through args, to method querybykey at
line 9. Here, no warning is generated since the tainted informa-
tion never reaches the first parameter of InvokeChaincode,
i.e., the sink for the analysis. Indeed, this latter targets the
hardcoded contract sealtx. It is thus only possible to query
the sealtx contract, without risking an UCCI.

5.3.3 False Positive and External Flows. False positives are a
consequence of excessive approximation. For instance, con-
sider the code in Fig. 6, where GoLiSA issues a warning that
can be classified as both external flow and false positive. In
the file, the functions GetFunctionAndParameters() (lines 1-
3) and GetKYC() (lines 11-25) are only declared and never
used in the file. Nevertheless, since the file contains both
source and sink (lines 2 and 23), the analysis is executed.

Although both functions are not explicitly called in the
contract, the analysis soundly assumes that they might be
called by functions of other chaincodes at run time. For this
reason, during the propagation phase, GetKYC at line 11 is
considered reachable and its the formal parameter userId is
over-approximated as tainted as it is statically unknown. Such
value is later propagated into params, arg and queryArgs at
lines 13, 15 and 17, respectively. Finally, tainted value coming
from queryArgs flows into the sink ctx.GetStub().Invoke-
Chaincode() at line 23 and the analysis issues a warning.
One might argue that this is a false positive, as there is no
explicit source-to-sink flow happening. However, as GetKYC
can be the target of a cross-contract call, we label the warning
as an external flow since it might lead to a UCCI.

If one rules out the possibility of a cross-contract call,
queryArgs at line 23 is clean. Nonetheless, a warning is
still issued at the same line: GetChannelID at line 6 returns

1 func (ctx * TransactionContext)
GetFunctionAndParameters () (string , []
string) {

2 return ctx.GetStub().GetFunctionAndParameters()
3 }
4

5 func (ctx * TransactionContext)
GetChannelName () (string , error) {

6 channelID := ctx.GetStub().GetChannelID()
7 // [...]

8 return channelID , nil
9 }

10

11 func (ctx * TransactionContext) GetKYC (

userId string) (bool , error) {
12

13 // [...]

14 channelName , err := ctx.GetChannelName()
15 // [...]

16 params := [] string { crossCCFunc , userId }

17 // [...]
18 queryArgs := make ([][] byte , len(params))
19 for i, arg := range params {

20 queryArgs[i] = [] byte(arg)

21 }
22 // [...]
23 response := ctx. GetStub (). InvokeChaincode (

crossCCName , queryArgs , channelName)

24 // [...]
25 }
26 // [...]

Figure 6: Simplified code from read_transaction.

a tainted value, that is then propagated into channelID
and channelName at lines 8 and 14, respectively. Finally,
channelName is used as parameter to the sink ctx.GetStub()-
.InvokeChaincode at line 23, and the GoLiSA creates a
warning at the end of the propagation phase. Such a warning
is a false positive, and it is due to the over-approximation
of the method GetChannelID at line 6. According to the
documentation of HF, GetChannelID returns the channel ID
for the proposal for chaincode to process. This would be the
’channel_id’ of the transaction proposal [. . .]. Such a value
is thus statically unknown, and GoLiSA models it as an
instruction that can return any possible string value. GoLiSA
does not currently distinguish between any possible value and
any possible user-provided value: in terms of taintedness, both
are modeled as a statically unknown and possibly tainted
value.

Since the sink at line 23 is tied to two different flows,
one of which is highlighting a real vulnerability, the warning
referring to it was still classified as an external flow in Table 2
since our analysis aims at being as sound as possible.

6 RELATED WORK
Taint analysis is used extensively in smart contract verifica-
tion tools to detect vulnerabilities, and can also be combined

SAC ’25, March 31-April 4, 2025, Catania, Italy L. Olivieri et al.

with graph reconstruction techniques to improve user experi-
ence [16]. For instance, it allows one to detect critical issues
such as re-entrancy [1, 50, 52]. It is considered one of the
most critical issues in smart contracts. It was also the root
cause of the well-known DAO attack [46], which resulted in
the loss of more than 50M of dollars for Ethereum users. The
exploitation allows an attacker to execute a recursive call-
back of the main function, making an unintended loop that
is repeated many times, leading to the fully destruction of
a contract or stealing valuable economic assets and informa-
tion. Typically, re-entrancy may be exploited by using CCIs
and creating an inter-contract loop. This makes re-entrancy
detection difficult. Furthermore, in the event of a UCCI, it
would be even easier for an attacker to create an ad hoc
malicious contract capable of exploiting the re-entrancy. In
this case, our analysis can identify any UCCIs, but cannot
detect the loop nor the re-entrancy in the case of trusted
CCIs.

Another issue that can be dealt with taint analysis is
the detection of Parity Wallet bug [42, 43]. It has become
very popular because it has been exploited by an attacker
to steal over 30M of dollars. The application implemented a
proxy pattern/library to split the logic of a wallet into two
separate smart contracts. The first smart contract calls the
second (the library) with a CCI to execute wallet operations.
Although this bug involves CCIs, the problem is different
from what this paper studies. The library address of the CCI
was hardcoded and the issue resided in the library containing
an issue concerning the method visibilities, which resulted in
the attacker directly taking control of the library. Instead, we
considered only CCIs with flows from an untrusted input as
UCCI, thus our analysis is not able to detect the issues related
to the Parity Wallet bug because the address is hardcoded
and not related to an untrusted input. Moreover, according
to Sayeed et al. [50], there are several tools for the detection
of Parity Wallet bugs but the coverage of this issue is still
challenging (tools such as Oyente [25] detect only 20% of
Parity Wallet hacks [54]).

Regarding UCCIs detection, to the best of our knowledge,
currently, there are no tools for Go, except for GoLiSA,
covering these issues. The Chaincode Analyzer [23], which
does provide checks for cross-channel invocation, does not
cover the UCCI cases. Indeed, cross-channel issues are similar
but limited to a specific scenario regarding channels and do
not lead to a code injection. In short words, channels [12]
are private subnets of communication between two or more
specific members of the blockchain network and where it is
also possible to deploy chaincodes. However, a transaction
failure happens when a chaincode calls another contract
deployed in a different channel because the execution policies
do not allow it [26]. In particular, Chaincode Analyzer [23]
only checks that there are no CCIs with different hardcoded
channel names, in order to report possible transaction failures.

Instead, concerning other smart contract languages, several
techniques are applied to detect UCCIs. ContractFuzzer [22]
generates fuzzing inputs and defines test oracles to detect
security vulnerabilities, including problems related to UCCIs

in Solidity. The tool contains an offline EVM instrumentation
and an online fuzzing tool. The offline EVM instrumentation
process is responsible for monitoring the execution of smart
contracts to extract information for vulnerability analysis.
The online fuzzer analyzes the smart contract under test with
additional information, such as its ABI interface. Compared
to our approach, fuzzing is a testing technique and can only
spot the issues but not ensure their absence [49]. Wang et
al. [56] propose a general platform for defect detection in
smart contracts, including the UCCI issues. The platform
generates the ASTs for each smart contract and obtains the
semantic description of corresponding functions and variables.
Hence, it generates assertions by knowledge of security model
libraries and semantic descriptions of ASTs and expressions
and then detects the defects of smart contracts. However,
as also stated by the authors, there are still problems that
need further research and improvement. In particular, they
use manual assertions, which in case of implementation er-
rors can lead to omissions. SolGuard [47] detects UCCIs
at compile time in Ethereum and focuses mainly on smart
contract-based multi-agent robotic systems. It implements
the analyses using AST traversing and semantic flow check-
ing. Mythril [44] bases the analyses on symbol execution
and concrete execution techniques to discover vulnerabilities,
including UCCIs. It combines static execution with dynamic
execution to improve path coverage and detection accuracy.
Note that the symbolic execution approach does not guaran-
tee the exploration of all program paths, leading potentially
to false negatives. SMARTSHIELD [57] dynamically high-
lights state changes and alterations after CCIs. It analyzes
both the AST and the unrectified EVM bytecode of each
contract to extract its bytecode-level semantic information.
Then, the tool fixes insecure control flows and data opera-
tions through control flow transformation and the insertion
of instruction sequences that perform certain data validity
checks. Finally, in MichelsonLiSA [33, 35], Olivieri et al. pro-
vide a UCCI analysis prototype for smart contracts written
in the Michelson language for the Tezos blockchain. However,
cross-contract invocations are limited in Michelson language.
Currently, they only allow one to transfer tokens and do
not support the call of different contract methods. Moreover,
MichelsonLiSA’s implementation performs only the first taint
analysis step because Michelson does not support explicit
APIs such as for data storage in blockchain or for sending
transaction responses, which instead are implicitly performed
at the end of each smart contract execution.

About cross-contract analysis, tools like SmartDagger [24],
CrossInspector [6], and Pluto[27] are specifically designed to
perform analysis also considering the inter-connected compo-
nents between different contracts. However, they can involve
complex and dynamic interactions, making it difficult to pre-
dict the behavior of contracts in all scenarios, especially over
time. Indeed, in the case of UCCIs, small changes in the
input are often enough to create a new malicious contract.
Therefore, inter-contract analysis may significantly burden
the UCCI detection adding only marginal improvements.

Static Detection of Untrusted Cross-Contract Invocations in Go Smart Contracts SAC ’25, March 31-April 4, 2025, Catania, Italy

7 CONCLUSION
This paper addresses the challenging issue of detecting un-
trusted cross-contract invocations in general-purpose lan-
guages, such as Go, and shows that the semantics-based
static analysis approach based on information flow in two
phases provides a precise, efficient, and scalable solution. Ex-
periments on existing smart contracts written in Go, crawled
from GitHub, empirically show that our approach is useful
and scalable in practice. Moreover, they also confirm that,
when targeting blockchain software, it is possible to adopt
analysis techniques that would typically have performance
and scalability problems over traditional industrial-size soft-
ware. Future work will investigate cross-contract contexts and
other challenges and issues such as re-entrancy and Parity
Wallet bugs on general-purpose languages.

ACKNOWLEDGMENTS
Work partially supported by SERICS (PE00000014 - CUP
H73C2200089001) and iNEST (ECS00000043 – CUP H43C22-
000540006) projects funded by PNRR NextGeneration EU,
and by Bando di Ateneo per la Ricerca 2022, funded by Uni-
versity of Parma, (MUR_DM737_2022_ FIL_PROGETTI
_B_ARCERI_COFIN, CUP: D91B210 05370003), "Formal
verification of GPLs blockchain smart contracts".

REFERENCES
[1] Mouhamad Almakhour, Layth Sliman, Abed Ellatif Samhat, and

Abdelhamid Mellouk. 2020. Verification of smart contracts: A
survey. Pervasive and Mobile Computing 67 (2020), 101227.

[2] A. M. Antonopoulos and G. Wood. 2018. Mastering Ethereum:
Building Smart Contracts and Dapps. O’Reilly.

[3] Alessandro Brighente, Mauro Conti, and Sathish Kumar. 2022.
Extorsionware: Exploiting Smart Contract Vulnerabilities for Fun
and Profit. ArXiv abs/2203.09843 (2022). https://arxiv.org/abs/
2203.09843

[4] Vitalik Buterin. 2016. EIP-170: Contract code size limit. https:
//eips.ethereum.org/EIPS/eip-170, Accessed: 02/2024.

[5] Christian Cattai. 2022. Extorsionware: Bringing Ransomware
Attacks to Blockchain Smart Contracts. Master thesis. University
of Padua, Italy.

[6] Xiao Chen. 2024. CrossInspector: A Static Analysis Approach
for Cross-Contract Vulnerability Detection. arXiv preprint
arXiv:2408.15292 (2024).

[7] Patrick Cousot. 1997. Types as Abstract Interpretations. In Proc.
of the 24th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, 1997. ACM Press, 316–331. https:
//doi.org/10.1145/263699.263744

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation. MIT
Press.

[9] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpreta-
tion: A Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints. In Proc. of the
4th Symposium on Principles of Programming Languages, 1977.
ACM, 238–252. https://doi.org/10.1145/512950.512973

[10] CWE Content Team, MITRE. 2010. CWE-829: Inclusion of
Functionality from Untrusted Control Sphere. https://cwe.mitre.
org/data/definitions/829.html, Accessed: 12/2022.

[11] Michael D. Ernst, Alberto Lovato, Damiano Macedonio, Ciprian
Spiridon, and Fausto Spoto. 2015. Boolean Formulas for the
Static Identification of Injection Attacks in Java. In Logic for
Programming, Artificial Intelligence, and Reasoning - 20th In-
ternational Conference, LPAR-20 2015, Suva, Fiji, November
24-28, 2015, Proceedings (Lecture Notes in Computer Science,
Vol. 9450). Springer, 130–145. https://doi.org/10.1007/978-3-
662-48899-7_10

[12] Hyperledger Fabric. 2024. Channels. https://hyperledger-fabric.
readthedocs.io/en/release-2.5/channels.html#channels (Accessed

04/2024).
[13] Pietro Ferrara, Elisa Burato, and Fausto Spoto. 2017. Security

Analysis of the OWASP Benchmark with Julia. In Proceedings of
the First Italian Conference on Cybersecurity (ITASEC17),
Venice, Italy, January 17-20, 2017 (CEUR Workshop Pro-
ceedings, Vol. 1816). CEUR-WS.org, 242–247. http://ceur-
ws.org/Vol-1816/paper-24.pdf Accessed: 01-12-2022.

[14] Pietro Ferrara, Luca Negrini, Vincenzo Arceri, and Agostino
Cortesi. 2021. Static analysis for dummies: experiencing LiSA.
In SOAP@PLDI 2021: Proc. of the 10th ACM SIGPLAN Int.
Workshop on the State Of the Art in Program Analysis. ACM,
1–6. https://doi.org/10.1145/3460946.3464316

[15] Pietro Ferrara, Luca Olivieri, and Fausto Spoto. 2018. Tailoring
Taint Analysis to GDPR. In Privacy Technologies and Policy
- 6th Annual Privacy Forum, APF 2018, Barcelona, Spain,
June 13-14, 2018, Revised Selected Papers (Lecture Notes in
Computer Science, Vol. 11079). Springer, 63–76. https://doi.
org/10.1007/978-3-030-02547-2_4

[16] Pietro Ferrara, Luca Olivieri, and Fausto Spoto. 2020. Back-
flow: Backward Context-Sensitive Flow Reconstruction of Taint
Analysis Results. In Verification, Model Checking, and Abstract
Interpretation: 21st International Conference, VMCAI 2020,
New Orleans, LA, USA, January 16–21, 2020, Proceedings (New
Orleans, LA, USA). Springer-Verlag, Berlin, Heidelberg, 23–43.
https://doi.org/10.1007/978-3-030-39322-9_2

[17] Pietro Ferrara, Luca Olivieri, and Fausto Spoto. 2021. Static
Privacy Analysis by Flow Reconstruction of Tainted Data. Int.
J. Softw. Eng. Knowl. Eng. 31, 7 (2021), 973–1016. https:
//doi.org/10.1142/S0218194021500303

[18] Hyperledger. 2024. Hyperledger Fabric Go API
Documentation - Shim Interfaces. https:
//github.com/hyperledger/fabric-chaincode-go/blob/
b84622ba6a7a9e543f3ca1994850c41423bc29a2/shim/interfaces.
go, Accessed 04/2024.

[19] Hyperledger. 2024. Hyperledger Fabric Go API
Documentation - Shim Response. https://
github.com/hyperledger/fabric-chaincode-go/blob/
b84622ba6a7a9e543f3ca1994850c41423bc29a2/shim/response.go,
Accessed 04/2024.

[20] Hyperledger. 2024. Transaction Flow - Hyperledger Fabric Docu-
mentation. https://hyperledger-fabric.readthedocs.io/en/release-
2.5/txflow.html, Accessed 04/2024.

[21] IBM. 2024. What is hyperledger fabric?
https://www.ibm.com/topics/hyperledger (Accessed 03/2024).

[22] Bo Jiang, Ye Liu, and W.K. Chan. 2018. ContractFuzzer:
Fuzzing Smart Contracts for Vulnerability Detection. In 2018
33rd IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE). 259–269. https://doi.org/10.1145/
3238147.3238177

[23] kzhry. 2021. Chaincode Analyzer. https://github.com/
hyperledger-labs/chaincode-analyzerc, Accessed: 09/2022.

[24] Zeqin Liao, Zibin Zheng, Xiao Chen, and Yuhong Nan. 2022.
SmartDagger: a bytecode-based static analysis approach for de-
tecting cross-contract vulnerability. In Proceedings of the 31st
ACM SIGSOFT International Symposium on Software Testing
and Analysis (Virtual, South Korea) (ISSTA 2022). Associa-
tion for Computing Machinery, New York, NY, USA, 752–764.
https://doi.org/10.1145/3533767.3534222

[25] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and
Aquinas Hobor. 2016. Making Smart Contracts Smarter. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security (Vienna, Austria) (CCS ’16). As-
sociation for Computing Machinery, New York, NY, USA, 254–269.
https://doi.org/10.1145/2976749.2978309

[26] Penghui Lv, Yu Wang, Yazhe Wang, and Qihui Zhou. 2021. Poten-
tial Risk Detection System of Hyperledger Fabric Smart Contract
based on Static Analysis. In IEEE Symposium on Computers
and Communications, ISCC 2021, Athens, Greece, September
5-8, 2021. IEEE, 1–7. https://doi.org/10.1109/ISCC53001.2021.
9631249

[27] Fuchen Ma, Zhenyang Xu, Meng Ren, Zijing Yin, Yuanliang Chen,
Lei Qiao, Bin Gu, Huizhong Li, Yu Jiang, and Jiaguang Sun. 2022.
Pluto: Exposing Vulnerabilities in Inter-Contract Scenarios. IEEE
Transactions on Software Engineering 48, 11 (2022), 4380–4396.
https://doi.org/10.1109/TSE.2021.3117966

[28] Amit Mandal, Pietro Ferrara, Yuliy Khlyebnikov, Agostino
Cortesi, and Fausto Spoto. 2020. Cross-Program Taint Anal-
ysis for IoT Systems. In Proceedings of the 35th Annual ACM

https://arxiv.org/abs/2203.09843
https://arxiv.org/abs/2203.09843
https://eips.ethereum.org/EIPS/eip-170
https://eips.ethereum.org/EIPS/eip-170
https://doi.org/10.1145/263699.263744
https://doi.org/10.1145/263699.263744
https://doi.org/10.1145/512950.512973
https://cwe.mitre.org/data/definitions/829.html
https://cwe.mitre.org/data/definitions/829.html
https://doi.org/10.1007/978-3-662-48899-7_10
https://doi.org/10.1007/978-3-662-48899-7_10
https://hyperledger-fabric.readthedocs.io/en/release-2.5/channels.html#channels
https://hyperledger-fabric.readthedocs.io/en/release-2.5/channels.html#channels
http://ceur-ws.org/Vol-1816/paper-24.pdf
http://ceur-ws.org/Vol-1816/paper-24.pdf
https://doi.org/10.1145/3460946.3464316
https://doi.org/10.1007/978-3-030-02547-2_4
https://doi.org/10.1007/978-3-030-02547-2_4
https://doi.org/10.1007/978-3-030-39322-9_2
https://doi.org/10.1142/S0218194021500303
https://doi.org/10.1142/S0218194021500303
https://github.com/hyperledger/fabric-chaincode-go/blob/b84622ba6a7a9e543f3ca1994850c41423bc29a2/shim/interfaces.go
https://github.com/hyperledger/fabric-chaincode-go/blob/b84622ba6a7a9e543f3ca1994850c41423bc29a2/shim/interfaces.go
https://github.com/hyperledger/fabric-chaincode-go/blob/b84622ba6a7a9e543f3ca1994850c41423bc29a2/shim/interfaces.go
https://github.com/hyperledger/fabric-chaincode-go/blob/b84622ba6a7a9e543f3ca1994850c41423bc29a2/shim/interfaces.go
https://github.com/hyperledger/fabric-chaincode-go/blob/b84622ba6a7a9e543f3ca1994850c41423bc29a2/shim/response.go
https://github.com/hyperledger/fabric-chaincode-go/blob/b84622ba6a7a9e543f3ca1994850c41423bc29a2/shim/response.go
https://github.com/hyperledger/fabric-chaincode-go/blob/b84622ba6a7a9e543f3ca1994850c41423bc29a2/shim/response.go
https://hyperledger-fabric.readthedocs.io/en/release-2.5/txflow.html
https://hyperledger-fabric.readthedocs.io/en/release-2.5/txflow.html
https://doi.org/10.1145/3238147.3238177
https://doi.org/10.1145/3238147.3238177
https://github.com/hyperledger-labs/chaincode-analyzerc
https://github.com/hyperledger-labs/chaincode-analyzerc
https://doi.org/10.1145/3533767.3534222
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1109/ISCC53001.2021.9631249
https://doi.org/10.1109/ISCC53001.2021.9631249
https://doi.org/10.1109/TSE.2021.3117966

SAC ’25, March 31-April 4, 2025, Catania, Italy L. Olivieri et al.

Symposium on Applied Computing (Brno, Czech Republic) (SAC
’20). 1944–1952. https://doi.org/10.1145/3341105.3373924

[29] Nick Mudge. 2020. ERC-2535: Diamonds, Multi-Facet Proxy.
https://eips.ethereum.org/EIPS/eip-2535, Accessed: 02/2024.

[30] Luca Negrini, Vincenzo Arceri, Luca Olivieri, Agostino Cortesi,
and Pietro Ferrara. 2024. Teaching Through Practice: Advanced
Static Analysis with LiSA. In Formal Methods Teaching, Emil
Sekerinski and Leila Ribeiro (Eds.). Springer Nature Switzerland,
Cham, 43–57. https://doi.org/10.1007/978-3-031-71379-8_3

[31] Luca Negrini, Pietro Ferrara, Vincenzo Arceri, and Agostino
Cortesi. 2023. LiSA: A Generic Framework for Multilanguage
Static Analysis. Springer Nature Singapore, Singapore, 19–42.
https://doi.org/10.1007/978-981-19-9601-6_2

[32] Luca Olivieri, Vincenzo Arceri, Badaruddin Chachar, Luca Ne-
grini, Fabio Tagliaferro, Fausto Spoto, Pietro Ferrara, and
Agostino Cortesi. 2024. General-Purpose Languages for
Blockchain Smart Contracts Development: A Comprehensive
Study. IEEE Access 12 (2024), 166855–166869. https://doi.
org/10.1109/ACCESS.2024.3495535

[33] Luca Olivieri, Thomas Jensen, Luca Negrini, and Fausto Spoto.
2023. MichelsonLiSA: A Static Analyzer for Tezos. In 2023 IEEE
International Conference on Pervasive Computing and Commu-
nications Workshops and other Affiliated Events (PerCom Work-
shops). 80–85. https://doi.org/10.1109/PerComWorkshops56833.
2023.10150247

[34] Luca Olivieri, Luca Negrini, Vincenzo Arceri, Badaruddin
Chachar, Pietro Ferrara, and Agostino Cortesi. 2024. Detection
of Phantom Reads in Hyperledger Fabric. IEEE Access 12 (2024),
80687–80697. https://doi.org/10.1109/ACCESS.2024.3410019

[35] Luca Olivieri, Luca Negrini, Vincenzo Arceri, Thomas Jensen,
and Fausto Spoto. 2024. Design and Implementation of Static
Analyses for Tezos Smart Contracts. Distrib. Ledger Technol.
(jan 2024). https://doi.org/10.1145/3643567 Just Accepted.

[36] Luca Olivieri, Luca Negrini, Vincenzo Arceri, Fabio Tagliaferro,
Pietro Ferrara, Agostino Cortesi, and Fausto Spoto. 2023. Informa-
tion Flow Analysis for Detecting Non-Determinism in Blockchain.
In 37th European Conference on Object-Oriented Programming
(ECOOP 2023) (Leibniz International Proceedings in Informat-
ics (LIPIcs), Vol. 263), Karim Ali and Guido Salvaneschi (Eds.).
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl,
Germany, 23:1–23:25. https://doi.org/10.4230/LIPIcs.ECOOP.
2023.23

[37] Luca Olivieri and Luca Pasetto. 2024. Towards Compliance of
Smart Contracts with the European Union Data Act. In CEUR
Workshop Proceedings, Vol. 3629. https://ceur-ws.org/Vol-3629

[38] Luca Olivieri, Luca Pasetto, Luca Negrini, and Pietro Ferrara.
2024. European Union Data Act and Blockchain Technology:
Challenges and New Directions. CEUR Workshop Proceedings
3791. https://ceur-ws.org/Vol-3791

[39] Luca Olivieri and Fausto Spoto. 2024. Software verification
challenges in the blockchain ecosystem. International Jour-
nal on Software Tools for Technology Transfer (2024). https:
//doi.org/10.1007/s10009-024-00758-x Published 2024/07/12.

[40] Luca Olivieri, Fabio Tagliaferro, Vincenzo Arceri, Marco Ruaro,
Luca Negrini, Agostino Cortesi, Pietro Ferrara, Fausto Spoto,
and Enrico Talin. 2022. Ensuring determinism in blockchain
software with GoLiSA: an industrial experience report. In SOAP

’22: 11th ACM SIGPLAN International Workshop on the State
Of the Art in Program Analysis, San Diego, CA, USA, 14
June 2022, Laure Gonnord and Laura Titolo (Eds.). ACM, 23–29.
https://doi.org/10.1145/3520313.3534658

[41] OpenZeppelin. 2018. Proxy Patterns. https://blog.openzeppelin.
com/proxy-patterns/, Accessed: 02/2024.

[42] Santiago Palladino. 2017. The Parity Wallet Hack Ex-
plained. https://blog.openzeppelin.com/on-the-parity-wallet-
multisig-hack-405a8c12e8f7/, Accessed: 03/2024.

[43] Santiago Palladino. 2017. Parity Wallet Hack Reloaded. https:
//blog.openzeppelin.com/parity-wallet-hack-reloaded/, Accessed:
03/2024.

[44] Nikhil Parasaram. 2020. Mythril Wiki Page. https://github.com/
ConsenSys/mythril/wiki Accessed: 10/2022.

[45] Giuseppe Antonio Pierro and Roberto Tonelli. 2021. Analysis of
Source Code Duplication in Ethreum Smart Contracts. In 2021
IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER). 701–707. https://doi.org/10.1109/
SANER50967.2021.00089

[46] Nathaniel Popper. 2016. A Hacking of More Than $50 Million
Dashes Hopes in the World of Virtual Currency. The New York

Times (2016). June 17th.
[47] Purathani Praitheeshan, Lei Pan, Xi Zheng, Alireza Jolfaei, and

Robin Doss. 2021. SolGuard: Preventing external call issues in
smart contract-based multi-agent robotic systems. Information
Sciences 579 (2021), 150–166. https://doi.org/10.1016/j.ins.2021.
08.007

[48] SWC Registry. 2020. SWC-112: Delegatecall to Untrusted Callee.
https://swcregistry.io/docs/SWC-112/ (Accessed 04/2024).

[49] Xavier Rival and Kwangkeun Yi. 2020. Introduction to static
analysis: an abstract interpretation perspective. Mit Press.

[50] Sarwar Sayeed, Hector Marco-Gisbert, and Tom Caira. 2020.
Smart Contract: Attacks and Protections. IEEE Access 8 (2020),
24416–24427. https://doi.org/10.1109/ACCESS.2020.2970495

[51] KC Tam. 2020. Cross-Chaincode Invoking in Hyperledger Fab-
ric. https://kctheservant.medium.com/cross-chaincode-invoking-
in-hyperledger-fabric-8b8df1183c04, Accessed: 03/2024.

[52] Palina Tolmach, Yi Li, Shang-Wei Lin, Yang Liu, and Zengxiang
Li. 2021. A Survey of Smart Contract Formal Specification and
Verification. ACM Comput. Surv. 54, 7, Article 148 (jul 2021),
38 pages. https://doi.org/10.1145/3464421

[53] Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridha-
ran, and Omri Weisman. 2009. TAJ: effective taint analysis
of web applications. In Proceedings of the 2009 ACM SIG-
PLAN Conference on Programming Language Design and Im-
plementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009,
Michael Hind and Amer Diwan (Eds.). Acm, 87–97. https:
//doi.org/10.1145/1542476.1542486

[54] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Ger-
vais, Florian Bünzli, and Martin Vechev. 2018. Securify: Prac-
tical Security Analysis of Smart Contracts. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security (Toronto, Canada) (CCS ’18). Associa-
tion for Computing Machinery, New York, NY, USA, 67–82.
https://doi.org/10.1145/3243734.3243780

[55] Shuai Wang, Chengyu Zhang, and Zhendong Su. 2019. Detecting
nondeterministic payment bugs in Ethereum smart contracts.
Proc. ACM Program. Lang. 3, OOPSLA (2019), 189:1–189:29.
https://doi.org/10.1145/3360615

[56] Xiaoqiang Wang, Jianhua Li, and Xuesen Zhang. 2022. A
Semantic-Based Smart Contract Defect Detection General Plat-
form. In 2022 IEEE International Conference on Advances in
Electrical Engineering and Computer Applications (AEECA).
34–37. https://doi.org/10.1109/AEECA55500.2022.9918903

[57] Yuyao Zhang, Siqi Ma, Juanru Li, Kailai Li, Surya Nepal, and
Dawu Gu. 2020. SMARTSHIELD: Automatic Smart Contract Pro-
tection Made Easy. In 2020 IEEE 27th International Conference
on Software Analysis, Evolution and Reengineering (SANER).
23–34. https://doi.org/10.1109/SANER48275.2020.9054825

https://doi.org/10.1145/3341105.3373924
https://eips.ethereum.org/EIPS/eip-2535
https://doi.org/10.1007/978-3-031-71379-8_3
https://doi.org/10.1007/978-981-19-9601-6_2
https://doi.org/10.1109/ACCESS.2024.3495535
https://doi.org/10.1109/ACCESS.2024.3495535
https://doi.org/10.1109/PerComWorkshops56833.2023.10150247
https://doi.org/10.1109/PerComWorkshops56833.2023.10150247
https://doi.org/10.1109/ACCESS.2024.3410019
https://doi.org/10.1145/3643567
https://doi.org/10.4230/LIPIcs.ECOOP.2023.23
https://doi.org/10.4230/LIPIcs.ECOOP.2023.23
https://ceur-ws.org/Vol-3629
https://ceur-ws.org/Vol-3791
https://doi.org/10.1007/s10009-024-00758-x
https://doi.org/10.1007/s10009-024-00758-x
https://doi.org/10.1145/3520313.3534658
https://blog.openzeppelin.com/proxy-patterns/
https://blog.openzeppelin.com/proxy-patterns/
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
https://blog.openzeppelin.com/parity-wallet-hack-reloaded/
https://blog.openzeppelin.com/parity-wallet-hack-reloaded/
https://github.com/ConsenSys/mythril/wiki
https://github.com/ConsenSys/mythril/wiki
https://doi.org/10.1109/SANER50967.2021.00089
https://doi.org/10.1109/SANER50967.2021.00089
https://doi.org/10.1016/j.ins.2021.08.007
https://doi.org/10.1016/j.ins.2021.08.007
https://swcregistry.io/docs/SWC-112/
https://doi.org/10.1109/ACCESS.2020.2970495
https://kctheservant.medium.com/cross-chaincode-invoking-in-hyperledger-fabric-8b8df1183c04
https://kctheservant.medium.com/cross-chaincode-invoking-in-hyperledger-fabric-8b8df1183c04
https://doi.org/10.1145/3464421
https://doi.org/10.1145/1542476.1542486
https://doi.org/10.1145/1542476.1542486
https://doi.org/10.1145/3243734.3243780
https://doi.org/10.1145/3360615
https://doi.org/10.1109/AEECA55500.2022.9918903
https://doi.org/10.1109/SANER48275.2020.9054825

	Abstract
	1 Introduction
	2 Untrusted Cross-Contract Invocations
	2.1 Towards UCCI Detection for General Purpose Languages

	3 UCCI Detection by Taint Analysis
	3.1 Running Example

	4 Implementation in GoLiSA
	4.1 Detection of Sources and Sinks in GoLiSA

	5 Experimental Evaluation
	5.1 Experimental Data Set (CCI)
	5.2 Experimental Results
	5.3 How to Classify Analysis Results

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

