
Static Analysis for Dummies: Experiencing LiSA
Pietro Ferrara

pietro.ferrara@unive.it
Ca’ Foscari University of Venice

Italy

Luca Negrini
luca.negrini@unive.it

Ca’ Foscari University of Venice, Corvallis S.r.l.
Italy

Vincenzo Arceri
vincenzo.arceri@unive.it

Ca’ Foscari University of Venice
Italy

Agostino Cortesi
cortesi@unive.it

Ca’ Foscari University of Venice
Italy

Abstract
Semantics-based static analysis requires a significant theoret-
ical background before being able to design and implement
a new analysis. Unfortunately, the development of even a
toy static analyzer from scratch requires to implement an
infrastructure (parser, control flow graphs representation,
fixpoint algorithms, etc.) that is too demanding for bache-
lor and master students in computer science. This approach
difficulty can condition the acquisition of skills on software
verification which are of major importance for the design of
secure systems. In this paper, we show how LiSA (Library
for Static Analysis) can play a role in that respect. LiSA im-
plements the basic infrastructure that allows a non-expert
user to develop even simple analyses (e.g., dataflow and nu-
merical non-relational domains) focusing only on the design
of the appropriate representation of the property of interest
and of the sound approximation of the program statements.

CCS Concepts: • Software and its engineering→ Gen-
eral programming languages; • Theory of computation
→ Program analysis.

Keywords: Static analysis, Abstract interpretation, Dataflow
analysis

ACM Reference Format:
Pietro Ferrara, Luca Negrini, Vincenzo Arceri, and Agostino Cortesi.
2023. Static Analysis for Dummies: Experiencing LiSA. In Proceed-
ings of ACM Conference (Conference’17). ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Static program analyses provide information about behav-
ioral properties of target programs at compilation time, i.e.,
working on their source code. Various frameworks are in
use, such as abstract interpretation [3], model checking [1]
and symbolic execution [5], only to cite a few. Several static
analysis techniques are often taught in bachelor or master
courses, in response of the increasing need of software veri-
fication skills. However, they require a relevant theoretical
background and several preliminary notions that must be
taught to students before they can move on to the imple-
mentation aspects that are equally challenging. For instance,
let us consider static analysis by abstract interpretation. It
requires notions about lattice and domain theory, control-
flow graphs, fix-point algorithms, and Galois connections.
Based on our teaching experience1, the theoretical back-
ground and notions take most of the available time, allowing
to show just some popular abstractions (e.g., sign and inter-
val domains). The issues related to the actual design of new
analyses and the experimental evaluation of the trade-off
between accuracy and computational cost of the analysis on
different domains risk to be neglected. This also limits the
involvement of brilliant students in this research area.
In this paper, we present how LiSA (Library for Static

Analysis2) can provide a complete and easy-to-use infras-
tructure to develop simple static analyses focusing on pe-
culiar aspects. LiSA is an open source platform developed
in Java that provides: (i) a very minimal Java-like object-
oriented dynamically-typed target programming language
(called IMP3), (ii) an internal and extensible control-flow
graph representation, (iii) a common analysis framework
for the development of new abstract domains, (iv) a simple
interface for the development of common analyses, such as
non relational or dataflow analyses, and finally (v) a fix-point
algorithm on control-flow graphs.

1Prof. Cortesi and the Software and System Verification group at Ca’ Foscari
University (https://ssv.dais.unive.it/) taught a course on static analysis in
the master in Computer Science during the last 2 decades. Full details at
https://www.unive.it/data/course/332756.
2https://github.com/UniVE-SSV/lisa
3Documentation available at https://unive-ssv.github.io/lisa

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://ssv.dais.unive.it/
https://www.unive.it/data/course/332756
https://github.com/UniVE-SSV/lisa
https://unive-ssv.github.io/lisa

Conference’17, July 2017, Washington, DC, USA Pietro Ferrara, Luca Negrini, Vincenzo Arceri, and Agostino Cortesi

Figure 2. LiSA Overall Execution

1 de f a = 1 ;
2 de f x = a + b ;
3 de f y = a ∗ b ;
4 whi l e (y > a) {
5 a = a + 1 ;
6 x = a + b ;
7 }
8 r e t u r n x ;

Figure 1. The
Running Example

Through the paper, we will adopt
as running example the snippet of
IMP code reported in Fig. 1, corre-
sponding to a slight modification of
Example 2.4 reported in [8].

The rest of the paper is organized
as follows. Sect. 2 introduces LiSA
and its main components, Sect. 3
presents some implementation of
static analyses, and Sect. 4 concludes giving some point-
ers about the lessons learnt from the use of LiSA within a
CS master course.

2 LiSA Architecture
In this section, we describe the LiSA architecture and its
main components using IMP as reference language.
Fig. 2 depicts a high-level flow of execution of LiSA. In

particular, given an IMP program, the IMP front-end, built
upon LiSA, translates it into a set of control-flow graphs
(CFG for short), one per method.

On each CFG, LiSA applies the typical worklist fix-point
algorithm on CFG nodes. Each specific CFG node is rewritten
as a composition of symbolic expressions, namely a set of ex-
pressions written in the internal language of LiSA. Symbolic
expressions model the semantics of each CFG node. Infor-
mally speaking, we can say that the LiSA CFGs express the
syntax of the program of interest, while LiSA symbolic ex-
pressions express semantics of CFGs, specifying the meaning
of each CFG node. For this reason, as we will discuss later,
LiSA abstract domains only deal with symbolic expressions
and not with CFG nodes. At the end of the analysis, LiSA
produces an entry and an exit abstract state for each node
(aka, statement) in the CFGs. Then, different information can
be dumped, for instance, the CFGs, the warning generated by
the analyses, or the labelling of the CFGs with the analysis
results assigned to each node.

2.1 LiSA CFG
LiSA CFG structure is designed to be as flexible as possible,
adapting a structure for representing functions, methods and
procedures coming from different programming languages.

Figure 3. LiSA Statement Class Hierarchy

Fig. 3 depicts the Statement class hierarchy, correspond-
ing to LiSA CFG nodes. The most part of the statements (e.g.,
Assignment, Variable, and Return) are self explanatory. As
common in many programming languages, expressions are
statements. Therefore, an expression like x (that is, accessing
variable x) is a valid statement. The only non-standard part is
theCall subtree. In particular, LiSA defines four types of calls:
UnresolvedCall, a call towards another CFG, that is yet to
be resolved to its actual target(s), CFGCall, a call towards one
or more of the CFGs submitted as input to LiSA, OpenCall,
a call towards a CFG that has not been submitted to LiSA,
that therefore has no knowledge on (e.g., call to a library
function), NativeCall, a call to a language native function
that is simulated through a call (e.g., +, array access) that
immediately provides its semantics through rewriting into
a symbolic expression. However, call resolution and evalua-
tion concern inter-procedural programs, a feature of static
analysis that is often omitted in bachelor or master courses.

The class Edge links a source node to a target node and, as
usual, we can have three types of edges: SequentialEdge,
modelling a sequential/unconditional flow from the source
node to the target node, TrueEdge, modelling a conditional
flow from the source node to the target node, if the condition
contained in the source node holds, FalseEdge, modelling a
conditional flow from the source node to the target node, if
the condition contained in the source node does not hold.

2.2 LiSA Front-end
We have described how programs are syntactically modelled
in LiSA by means of the flexible CFG structure previously
presented. In order to analyze IMP programs, LiSA needs
an additional component, called front-end, that manages
the translation from IMP source code to LiSA CFGs. In gen-
eral, a LiSA front-end for a generic language 𝐿, translates 𝐿
programs into LiSA CFGs. In this paper, we do not go into
details about how a LiSA front-end works, since this con-
cerns mostly how the syntax of a programming language is
transformed into a structured representation. If on the one
hand such component might still be interesting for courses

Static Analysis for Dummies: Experiencing LiSA Conference’17, July 2017, Washington, DC, USA

Figure 4. CFG of the Running Example

on compiler construction, on the other hand it is a side (but
needed) component w.r.t. the core concepts of static analysis.
Fig. 4 reports the CFG of the running example presented

in Sect. 1. In particular, the first three nodes contain the
assignments at lines 1-3, while the rest of the CFG represents
the while loop (lines 4-7) an the return statement (line 8).

2.3 LiSA Symbolic Expressions
We now deepen into the formal meaning of the content of
CFG nodes. In particular, LiSA provides a set of internal
symbolic expressions, with a well-defined semantics. Each
Statement rewrites itself as a composition of these symbolic
expressions. Symbolic expressions can be seen as the inter-
nal language of LiSA: indeed, abstract domains define and
implement their semantics on such expressions, and not on
instances of Statement.

Fig. 5 depicts the SymbolicExpression class hierarchy, where
we can note two major types of symbolic expressions. Value-
Expressions are the symbolic expressions defined on constant
values and identifiers. Here, for example, we can find the
NUMERIC_ADD and STR_CONCAT symbolic binary expres-
sions, corresponding to the numerical addition and the string
concatenation operations. Instead, HeapExpressions are the
symbolic expressions that model operations on the heap,
namely AccessChild, HeapAllocation and HeapReference. In
this way, we can clearly split the expressions dealing with the
heap, and the ones that instead concern only local identifiers.
Consider for instance the expression a+b assigned to variable
x at line 2 of our running example in Fig. 1. Such expression
is translated into a symbolic BinaryExpression whose op-
erator is a numerical addition, and this is represented by
+(a,b) in the CFG in Fig. 4.4

2.4 Analysis Infrastructure
Before presenting the structure of the LiSA abstract state, we
need to introduce two fundamental elements of the analysis
infrastructure: Lattice and SemanticDomain interfaces.
Lattice represents elements of a lattice and it is paramet-

ric to the concrete instance L, that needs to implement the

4Such a transformation is not known as a priori but it depends on the input
abstract state (e.g., on the types of the expressions).

bottom and top elements, least upper bound (lub for short)
and widening operations, and the partial order.

Similarly, SemanticDomain is parametric on the concrete
instance D, and it represents domains that know how to rea-
son about semantics of symbolic expressions. Specifically, a
semantic domain reasons about symbolic expressions of type
E and identifiers of type I, that are generic type parameters
of the SemanticDomain interface. For instance, numerical
abstract domains such as intervals or signs only reason about
value symbolic expressions. A semantic domain D must im-
plement the following methods:

• D assign(I id, E exp) yields a copy of the domain mod-
ified by the assignment of the abstract value corre-
sponding to the evaluation of exp to id;

• D assume(E exp) yields a copy of a domain modified
by assuming that exp holds;

• D forgetIdentifier(I id) forgets all information gathered
by the domain about the identifier id;

• D forgetIdentifiers(Collection<I>ids) forgets all infor-
mation about all identifiers ids;

• Satisfiability satisfies(E exp) yields whether exp is sat-
isfied in the program state represented by a domain (it
may return SAT, UNSAT, UNKNOWN or BOTTOM);

• D smallStepSemantics(E exp) yields a copy of a domain
modified by the evaluation of the semantics of exp.

This separation permits, when implementing an abstract
domain, to split the more algebraic domain information (e.g.,
lub, widening, partial order, . . .) from the more semantic
one (e.g., perform an assignment on the domain, satisfy a
symbolic expression in the domain, . . .).

LiSA Abstract State. An abstract state wraps together a
value domain V and a heap domainH. In particular, ValueDo-
main is an interface, parametric on the concrete type V, that
extends Lattice<V> and SemanticDomain<V, ValueExpres-
sion, Identifier>, meaning that can handle any ValueExpres-
sion and any Identifier. HeapDomain is an interface, para-
metric on the concrete type H, that extends Lattice<H> and
SemanticDomain<SymbolicExpression, Identifier> meaning
that it can handle any SymbolicExpression and any Identifier.
The structure of the abstract state is then implemented

in LiSA following the framework presented in [4]. In a nut-
shell, when the abstract state needs to evaluate a (symbolic)
expression, it is first evaluated on the heap abstract domain
that, other than updating itself accordingly to the semantics,
rewrites the expression by removing all the bits regarding
heap operations with HeapIdentifiers, in order to make the
expression processable by ValueDomains. Then, the rewrit-
ten expression, that does not contain any heap reference
anymore, is processed and evaluated by the value abstract
domain. All this is implemented in the AbstractState class.
In this way, one can implement a value (e.g., numerical)
domain without the need to implement the semantics of
heap accesses as well. This is particularly convenient since

Conference’17, July 2017, Washington, DC, USA Pietro Ferrara, Luca Negrini, Vincenzo Arceri, and Agostino Cortesi

Figure 5. LiSA SymbolicExpression Hierarchy Class

students might apply standard implementation of heap ab-
stractions in conjunction with their code without the need
of knowing the inner details of such abstractions that are
usually rather complex for non-experts.

LiSA Built-in Abstract Domains. LiSA provides several
built-in abstract domains that ease the development of new
abstract domains. Here, we discuss and present some value
basic abstract domains, preparing the ground for Sect. 3.

LiSA provides a base implementation for lattice domains,
called BaseLattice, that handles base cases (i.e., with top or
bottom values) for lattice operations such as lub, widening
and less or equal, as well as special instances for some pop-
ular lattice structures. One such structure is SetLattice<E>,
modelling a lattice where elements are sets of instances of
E, and where the lub is the set union. Similarly, LiSA pro-
vides the InverseSetLattice<E> class, where the lub is the set
intersection.

Let us focus on value abstraction and let us consider non-
relational numerical abstract domains, that is, domains that
track some information (such as the interval or sign) on
a single variable without relating it to other variables. For
these kinds of abstract domains, LiSA provides two important
built-in implementations: ValueEnvironment and BaseNon-
RelationalValueDomain. In particular, ValueEnvironment
provides an environment for a non-relational value domain
D, mapping identifiers to instances of D. In particular, a
value environment keeps track of the non-relational abstract
domain D and a map from identifier to elements of D, as
reported below.
1 c l a s s ValueEnvironment <D ex tends NonRelat ionalValueDomain >
2 ex t ends B a s e L a t t i c e
3 implements SemanticDomain < I d e n t i f i e r , Va lueExp re s s i on > {
4
5 Map< I d e n t i f i e r , D> f un c t i o n ;
6 D dom ;
7
8 pu b l i c ValueEnvironment <D> a s s i g n (I d e n t i f i e r id , E exp) {
9 Map< I d e n t i f i e r , D> func = mkNewFunction (f u n c t i o n) ;
10 D eva l = dom . e v a l (va lue , t h i s) ;
11 func . put (id , e v a l) ;
12 r e t u r n new ValueEnv i ronment (dom , f un c t i o n) ;
13 }

Let us focus on the assign method. Its implementation is
the one expected from an environment: given an assignment

id = exp, evaluates exp in the current environment using
the non-relational abstract domain D (lines 10-11), finally
assigning the result of the evaluation to id (line 12).

BaseNonRelationalValueDomain is an abstract class that
provides a base implementation for non-relational value do-
mains. Instances of this domain are, for example, intervals,
signs, integer constant propagation, and parity abstract do-
mains. Such a base implementation internally handles the
intermediate computation of the value symbolic expressions
semantics. When presenting ValueEnvironment, we sup-
posed that a non-relational value domain D provided an eval
method, evaluating a value symbolic expression. A fragment
of the implementation, in BaseNonRelationalValueDomain,
is reported in the following.

1 pu b l i c D e v a l (Va l u eExp r e s s i on exp , ValueEnvironment <D> env >) {
2 . . .
3 i f (exp i n s t a n c e o f B i n a r yExp r e s s i on) {
4 B ina r yExp r e s s i on b ina ry = (B i n a r yExp r e s s i on) exp ;
5
6 D l e f t = e v a l (b i na ry . g e t L e f t () , env) ;
7 i f (l e f t . i sBot tom ()) r e t u r n l e f t ;
8
9 D r i g h t = e v a l (b i na ry . g e tR i gh t () , env) ;
10 i f (r i g h t . i sBot tom ()) r e t u r n r i g h t ;
11
12 r e t u r n e v a l B i n a r y E x p r e s s i o n (
13 b ina ry . ge tOpe ra to r () , l e f t , r i g h t) ;
14 }
15 }
16
17 a b s t r a c t T e v a l B i n a r y E x p r e s s i o n (BinaryOp op , D l e f t , D r i g h t) ;

We have reported the behavior of eval only when exp
is a binary expression. The others cases (e.g., ternary ex-
pressions, constant, . . .) are similar. In particular, the left
and right operands of the binary expression are recursively
evaluated (lines 6-7 and 9-10, respectively) and when one
of them corresponds to bottom, then bottom is returned.
This class requires the concrete implementation to provide
a method evalBinaryExpression, taking as input the binary
operator and the final computed values for left and right.
In this way, the concrete implementation (e.g., sign) only
needs to implement the semantics of each binary operator
(e.g., NUMERIC_ADD) on final values, since intermediate re-
cursive evaluations have been already handled by BaseNon-
RelationalValueDomain and it can suppose that these final

Static Analysis for Dummies: Experiencing LiSA Conference’17, July 2017, Washington, DC, USA

(a) (b)

Figure 6. (a) Available Expressions (b) Sign Analysis Results
on the Running Example in Fig. 1.

values are not equal to bottom (being excluded by the eval
method).

As we will see in the next section, this analysis infrastruc-
ture permits to develop popular abstract domains with very
few lines of codes.

3 Simple Analyses Implementation
Finally, we present the implementation of some simple value
analyses that are usually formalized and taught in static anal-
ysis courses. In particular, we present the dataflow-based
available expression analysis and the sign abstract domain.
These are just two possible instances of the LiSA infrastruc-
ture, while slightly different analyses (e.g., constant propa-
gation, intervals,. . .) might be implemented in a similar way.

How to Run LiSA. The following fragment shows how
to run LiSA using the IMP front-end and how to obtain the
analysis results that we will show in this section.
1 Program program = IMPFrontend . p r o c e s s F i l e (f i l e P a t h) ;
2 LiSA l i s a = new LiSA () ;
3 l i s a . se tProgram (program) ;
4 l i s a . s e t A b s t r a c t S t a t e (g e tDe f au l t F o r (A b s t r a c t S t a t e . c l a s s ,
5 new Monol i th icHeap () ,
6 new Sign ())) ;
7 l i s a . setDumpAnalys i s (t r u e) ;
8 l i s a . s e tWorkd i r (ou tD i r) ;
9 l i s a . run () ;

First line invokes the IMP front-end in order to process the
IMP program located at filePath, returning a Program that
contains the LiSA CFGs corresponding to the functions con-
tained in the source program. Lines 2-3 create an instance
of LiSA and sets the program that we aim to analyze. Lines
4-6 sets the abstract state, and in turn the heap and value
domains. In this case, we use the default implementation for
the abstract state but we set the monolithic heap5 and the
sign abstractions for heap and value domains, respectively.
5MonolithicHeap is a LiSA built-in heap domain where any heap concrete
location is abstracted into a single and unique abstract location monolith.

Then, line 7 tells to LiSA to just dump the analysis results,
that will be dumped in the output directory outDir specified
at line 8. Finally, the analysis is executed.

3.1 Dataflow Analyses
LiSA provides suitable interfaces for dataflow analyses, both
possible and definite. In the following, we show the LiSA
interface for forward and definite dataflow analyses. Dually,
LiSA provides the interface for possible dataflow analyses.
The DefiniteForwardDataflowDomain class extends Val-

ueDomain, already discussed before, and InverseSetLattice,
since it needs to track sets of dataflow elements ot type E
(e.g., available expressions) on which the join operation is
the set intersection, being the analysis definite.
1 c l a s s Def in i teForwardDataf lowDomain <E extend Dataf lowElement >
2 ex t ends I n v e r s e S e t L a t t i c e <Def in i teForwardDataf lowDomain <E>>
3 implements ValueDomain <Def in i teForwardDataf lowDomain <E>> {
4
5 p r i v a t e f i n a l E domain ;
6 . . .
7 @Override
8 pu b l i c Def in i teForwardDataf lowDomain <E>
9 a s s i g n (I d e n t i f i e r id , Va l u eExp r e s s i on exp) {
10
11 Def in i teForwardDataf lowDomain <E> k i l l e d =
12 f o r g e t I d e n t i f i e r s (domain . k i l l (id , exp)) ;
13 Set <E> r e s = new HashSet < >(k i l l e d . e l ements) ;
14 f o r (E gene ra t ed : domain . gen (id , exp))
15 r e s . add (gene ra t ed) ;
16 r e t u r n new Def in i teForwardDataf lowDomain <E > (domain , r e s) ;
17 }
18 }

Let us focus on the method assign. The concrete imple-
mentation of DataflowElement must provide the classical
kill and gen methods of the dataflow analyses, that are used
inside the assign method: it first applies the kill method in
order to remove the killed dataflow elements (lines 11-12),
and then it applies the gen method on the so-obtained result
to add the dataflow elements that are generated by the as-
signment (lines 13-15). In this way, the effects of the gen and
kill methods are internally handled by the above class and
they do not need to be implemented by the specific instance
of dataflow analysis. Indeed, it is enough for the dataflow
element concrete implementation E to implement the kill
and gen methods. For instance, the class AvailableExps is
just few lines of code, as reported below.
1 c l a s s A v a i l a b l e E x p s implements Dataf lowElement {
2 p r i v a t e I d e n t i f i e r i d ;
3 p r i v a t e Symbo l i c E xp r e s s i on exp ;
4 . . .
5 pu b l i c Co l l e c t i o n < Ava i l a b l eE xp s > gen (
6 I d e n t i f i e r id , Va l u eExp r e s s i on exp ,
7 Def in i teForwardDataf lowDomain < Ava i l a b l eE xp s > domain) {
8 Co l l e c t i o n < Ava i l a b l e E x p r s > r e s u l t = new HashSet < > () ;
9 i f (! c o n t a i n s I d (exp , i d))
10 r e s u l t . add (new Ava i l a b l e E x p s (id , exp)) ;
11 r e t u r n r e s u l t ;
12 }
13
14 pu b l i c Co l l e c t i o n < I d e n t i f i e r > k i l l (
15 I d e n t i f i e r id , Va l u eExp r e s s i on exp ,
16 Def in i teForwardDataf lowDomain < Ava i l a b l eE xp s > domain) {
17 Co l l e c t i o n < I d e n t i f i e r > r e s u l t = new HashSet < > () ;
18 r e s u l t . add (i d) ;
19
20 f o r (A v a i l a b l e E x p s ae : domain . ge tData f l owE lement s ()) {
21 Co l l e c t i o n < I d e n t i f i e r > i d s = g e t I d s (ae . exp) ;
22 i f (i d s . c on t a i n s (i d)) r e s u l t . add (ae . i d) ;
23 }

Conference’17, July 2017, Washington, DC, USA Pietro Ferrara, Luca Negrini, Vincenzo Arceri, and Agostino Cortesi

24 r e t u r n r e s u l t ;
25 }
26 }

At this point, it is enough to feedDefiniteForwardDataflow-
Domain with AvailableExps, set it as value domain and run
LiSA as we have shown at the beginning of Sect. 3. Fig. 6a
depicts the analysis results for our running example, where
each node reports the computed available expressions.

3.2 Non-relational Abstract Domains
One of the first numerical analyses that are usually intro-
duced in static analysis courses is sign analysis, tracking, for
each variable whether it is zero, positive or negative. As we
have already discussed in Sect. 2.4, LiSA offers the BaseNon-
RelationalValueDomain to easily develop non-relational value
domains, requiring to the concrete class to just implement
symbolic expressions evaluation methods on non-bottom
elements. In the following, we report the Sign class with its
evalBinaryExpression method. Similarly, it implements the
evaluation methods for the other symbolic expressions types
(e.g., unary, ternary, constant, . . .).

1 c l a s s S ign ex t ends BaseNonRelat iona lVa lueDomain {
2 s t a t i c f i n a l S ign POS = new Sign () ;
3 s t a t i c f i n a l S ign NEG = new Sign () ;
4 s t a t i c f i n a l S ign ZERO = new Sign () ;
5 s t a t i c f i n a l S ign TOP = new Sign () ;
6 s t a t i c f i n a l S ign BOTTOM = new Sign () ;
7 . . .
8 S ign e v a l B i n a r y E x p r e s s i o n (BinaryOp op ,
9 S ign l e f t , S ign r i g h t) {
10 sw i t ch (op) {
11 . . .
12 ca se NUMERIC_ADD :
13 i f (l e f t . i s Z e r o ()) r e t u r n r i g h t ;
14 e l s e i f (r i g h t . i sZ e r o ()) r e t u r n l e f t ;
15 e l s e i f (l e f t . e qua l s (r i g h t)) r e t u r n l e f t ;
16 e l s e r e t u r n TOP ;
17 . . .
18 }
19 }
20 }

Lines 2-6 define the five abstract points that compose
the Sign lattice. Then, at lines 10-17, method evalBinaryEx-
pression switches on the binary operator op, defining the
corresponding sign abstract semantics. We report only the
case for the binary operator NUMERIC_ADD, implementing
the classical signs rules.
At this point, we can feed ValueEnvironment with Sign

and run LiSA. The analysis results for our running example
are reported in Fig. 6b. The only variable for which its sign
can determined is a (being other variables statically unknown
inputs) and LiSA correctly infers that a is always positive.

3.3 Advanced Analyses
We conclude this section listing some built-in constructs
offered by LiSA for more advanced analyses. For instance,
LiSA offers constructs for easily combining abstract domains
implemented in LiSA by means of the Cartesian product
operator, permitting to run two independent analyses in
parallel, without re-implementing the composition.

Moreover, we just focused on value analyses, omitting
everything concerning heap analyses. Nevertheless, LiSA
also offers built-in heap analyses such as class-based and
point-based heap abstractions that can be combined with
value analyses to show the interaction between value and
heap domains.
Finally, in this paper we have just shown the implemen-

tations of dataflow and non-relational numerical analyses.
With the same effort, it is possible to develop also string
abstractions (e.g., [2]) and relational abstractions (e.g., [6, 7])

4 Conclusion
In this paper, we described how LiSA can be applied to
teach static analysis, presenting its analysis infrastructure
and some examples of static analyses that can be presented
in a static analysis course for bachelor or master students.
LiSA is a work-in-progress project and we plan to provide
the first stable release by mid-2021, containing support for
backward analysis, trace partitioning, new fix-point algo-
rithm parameters (e.g., loop unrolling, narrowing) and new
domain combinations (e.g., smashed sum, reduced prod-
uct). For this reason, any suggestion and feedback from
the reviewers on LiSA would be very useful and appreci-
ated. Nevertheless, we have already involved LiSA in the
static analysis master course in Ca’ Foscari University of
Venice. The lectures concerning LiSA are listed here: Intro-
duction to LiSA (https://youtu.be/_PRzMxFhTU0), Dataflow
analysis (https://youtu.be/FmYz9yb4_Vo), Abstract interpre-
tation (https://youtu.be/3iNkQrbi9Ig).

References
[1] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification

of finite-state concurrent systems using temporal logic specifications.
ACM Trans. Program. Lang. Syst., 8(2):244–263, 1986. URL https://doi.
org/10.1145/5397.5399.

[2] G. Costantini, P. Ferrara, and A. Cortesi. A suite of abstract domains for
static analysis of string values. Softw. Pract. Exp., 45(2):245–287, 2015.
URL https://doi.org/10.1002/spe.2218.

[3] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation
of fixpoints. In Proc. of the Fourth ACM Symposium on Principles of
Programming, January 1977, pages 238–252. ACM, 1977. URL https:
//doi.org/10.1145/512950.512973.

[4] P. Ferrara. A generic framework for heap and value analyses of object-
oriented programming languages. Theor. Comput. Sci., 631:43–72, 2016.
URL https://doi.org/10.1016/j.tcs.2016.04.001.

[5] J. C. King. Symbolic execution and program testing. Commun. ACM,
19(7):385–394, 1976. URL https://doi.org/10.1145/360248.360252.

[6] F. Logozzo and M. Fähndrich. Pentagons: A weakly relational abstract
domain for the efficient validation of array accesses. Sci. Comput. Pro-
gram., 75(9):796–807, 2010. URL https://doi.org/10.1016/j.scico.2009.04.
004.

[7] A. Miné. The octagon abstract domain. High. Order Symb. Comput., 19
(1):31–100, 2006. URL https://doi.org/10.1007/s10990-006-8609-1.

[8] F. Nielson, H. R. Nielson, and C. Hankin. Principles of program analysis.
Springer, 1999. ISBN 978-3-540-65410-0. URL https://doi.org/10.1007/
978-3-662-03811-6.

https://youtu.be/_PRzMxFhTU0
https://youtu.be/FmYz9yb4_Vo
https://youtu.be/3iNkQrbi9Ig
https://doi.org/10.1145/5397.5399
https://doi.org/10.1145/5397.5399
https://doi.org/10.1002/spe.2218
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1016/j.tcs.2016.04.001
https://doi.org/10.1145/360248.360252
https://doi.org/10.1016/j.scico.2009.04.004
https://doi.org/10.1016/j.scico.2009.04.004
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-662-03811-6

	Abstract
	1 Introduction
	2 LiSA Architecture
	2.1 LiSA CFG
	2.2 LiSA Front-end
	2.3 LiSA Symbolic Expressions
	2.4 Analysis Infrastructure

	3 Simple Analyses Implementation
	3.1 Dataflow Analyses
	3.2 Non-relational Abstract Domains
	3.3 Advanced Analyses

	4 Conclusion
	References

