
Ensuring Determinism in Blockchain Software with
GoLiSA: An Industrial Experience Report
Luca Olivieri

luca.olivieri@univr.it
University of Verona

Corvallis S.r.l.
Italy

Fabio Tagliaferro
fabio.tagliaferro@univr.it
University of Verona

Commercio.network S.p.A.
Italy

Vincenzo Arceri
vincenzo.arceri@unipr.it
University of Parma

Italy

Marco Ruaro
marco.ruaro@gmail.com
Commercio.network S.p.A.

Italy

Luca Negrini
luca.negrini@unive.it

Ca’ Foscari University of Venice
Corvallis S.r.l.

Italy

Agostino Cortesi
cortesi@unive.it

Ca’ Foscari University of Venice
Italy

Pietro Ferrara
pietro.ferrara@unive.it

Ca’ Foscari University of Venice
Italy

Fausto Spoto
fausto.spoto@univr.it
University of Verona

Italy

Enrico Talin
enrico.talin@commerc.io
Commercio.network S.p.A.

Italy

Abstract
Ensuring determinism is mandatory when writing block-

chain software. When determinism is not met it can lead to
serious implications in the blockchain network while com-
promising the software development, release, and patch-
ing processes. In the industrial context, it is widespread to
adopt general-purpose languages, such as Go, for developing
blockchain solutions. However, it is not surprising that non-
deterministic behaviors may arise, being these programming
languages not originally designed for blockchain purposes.
In this paper, we present an experience report on ensuring
determinism in blockchain software with GoLiSA, a static an-
alyzer based on abstract interpretation for Go applications, in
an industrial context. In particular, we ran GoLiSA on Com-
mercio.network, a blockchain-based solution for exchanging
electronic documents in a legally binding way. Thanks to
GoLiSA, non-trivial bugs got detected and the analysis per-
formed made it possible to identify the critical points where
to apply the fixes.

CCS Concepts: • Security and privacy → Distributed
systems security; • Theory of computation→ Program

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

analysis; • Software and its engineering → General pro-
gramming languages.

Keywords: Static Analysis, Blockchain, Non-determinism,
Cosmos SDK, Go language, Software testing

ACM Reference Format:
Luca Olivieri, Fabio Tagliaferro, Vincenzo Arceri, Marco Ruaro,
LucaNegrini, Agostino Cortesi, Pietro Ferrara, Fausto Spoto, and En-
rico Talin. 2023. Ensuring Determinism in Blockchain Software with
GoLiSA: An Industrial Experience Report. In Proceedings of ACM
Conference (Conference’17). ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
A blockchain can be described as a deterministic state

machine replicated into a distributed and decentralized net-
work, preventing data tampering through a consensus mech-
anism. In simple terms, a deterministic state machine is just
a program that holds a state and changes deterministically
based on the inputs it receives. However, the blockchain is
a distributed and decentralized entity on multiple nodes of
a network. Therefore, it requires software running on the
majority of nodes to compute and commit the same result,
in order to achieve a common consensus state among peers
and update the blockchain global state.
In the industrial context, general-purpose programming

languages are increasingly used for writing blockchain soft-
ware. Their success is mostly due to their wide diffusion
and popularity, which implies that large pools of expert de-
velopers can be re-employed. Moreover, these languages
are typically well supported in terms of libraries and tools
(IDEs, test suites, monitoring and profiling tools, etc.). How-
ever, general-purpose languages were not conceived for

https://orcid.org/0000-0001-8074-8980
https://orcid.org/0000-0002-5904-8768
https://orcid.org/0000-0002-5150-0393
https://orcid.org/0000-0001-9930-8854
https://orcid.org/0000-0002-0946-5440
https://orcid.org/0000-0002-4678-933X
https://orcid.org/0000-0003-2973-0384
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA L. Olivieri, F. Tagliaferro, V. Arceri, M. Ruaro, L. Negrini, A. Cortesi, P. Ferrara, F. Spoto, and E. Talin

blockchain software and may introduce non-deterministic
behavior inside the blockchain software.
In joint work with the company Commercio.network,

we studied the impact of non-deterministic behaviors in
a blockchain and how they can compromise the software
development, release, and patching of blockchain solutions.
In this paper, we present the results about issues of non-

determinism detected by formal verification, with theGoLiSA
analyzer, of the open-source software provided by Commer-
cio.network. Besides identifying these issues, we also discuss
the implications during the development phase, such as miti-
gating risks before release and problems related to a possible
patch.

2 Ensuring Determinism in Blockchain
The software deployed into a blockchain is distributed and

decentralized in different peers of the blockchain network.
The consensus mechanism is the component that checks the
results of blockchain software, the state of peers involved in
the consensus and allows or not to update the global state of
the blockchain. If a certain threshold of commonly commit-
ted states among peers is reached, the common state is used
to update the global state (i.e., consensus reached), otherwise
it is discarded (i.e., consensus not reached) avoiding updating
the state differently among the blockchain nodes.
Therefore, ensuring determinism in blockchain software

becomes of crucial importance. In particular, starting from a
common state, it guarantees that the same result is reached
with the same response in any distinct blockchain peer, avoid-
ing inconsistency among blockchain participants and miti-
gating consensus failures.

Domain-specific languages for blockchain software, such
as Solidity for developing smart contracts in Ethereum [17],
are deterministic by design. Instead, general-purpose pro-
gramming languages, such as Go, may not guarantee it be-
cause they might lead to non-deterministic behaviors due
to the semantics of some standard operations or methods,
such as map iteration1, random API, system API, etc. (Tab. 1
shows the potential sources of non-determinism in the Go
language). For this reason, on the latter, it is necessary to
check that the code does not present this type of problem
before using it to launch a blockchain network.

3 Commercio.network and Cosmos SDK
Commercio.network [4] is an open-source decentralized

application provided by the homonymous company2. As a
blockchain, it can be described as a permissioned Proof-Of-
Stake network, where a validator must join a consortium for
being able to participate in the consensus. It can be described

1In Go, the iteration over maps is not guaranteed to be deterministic:
https://golang.org/ref/spec#For_statements
2https://commercio.network/

Table 1. Overview of non-deterministic behaviors in Go. Most of
the APIs contained in these packages lead to non-deterministic
behaviors, but some can be considered safe for determinism.

Level Category Package Statements/Methods
Framework Map iteration - range on map
and Language Parallelization - go (go routine),

and concurrency <- (channel)
Random value math/rand, *generation APIs crypto/rand

Environment File system APIs io, embed, *
archive, compress

OS APIs os, syscall, *
internal, time

Database APIs database *
Internet APIs net *

also as public since anyone can set up a node3 and synchro-
nize it with the Commercio.network main-net.The main pur-
pose of this blockchain is to exchange electronic documents
in a legally binding way thanks to the eIDAS Compliance4,
while following the principles of Self-Sovereign Identity [1].

As shown in Fig. 1, the architecture of Commercio.network
is based on the Cosmos SDK [12], an open-source framework
written in the Go programming language allowing the cre-
ation of modules for blockchain software. More precisely,
the Cosmos SDK is not a smart contract framework, i.e., the
framework is not directly involved to implement smart con-
tracts. It is a real framework for decentralised applications
(DApps) that can support different and peculiar functionali-
ties5, running in a distributed set of nodes. DApp developers
need to worry only about the application logic, which is
separated from the consensus and networking layers. In fact,
the Cosmos SDK abstracts the machinery needed to set up a
network running through the consensus mechanism Tender-
mint Core [3], recently rebranded as Ignite6. The architecture
of a module conventionally revolves around the keeper, a
package and entity implementing its core functionalities.
The Cosmos SDK can also be seen as a collection of modules,
that can be used to build custom ones, following the object-
capability model [7]. For example, the Commercio.network
module commerciokyc uses the keeper of another custom
module, commerciomint, along with other modules coming
from the library of Cosmos SDK.

4 An Overview of GoLiSA
GoLiSA7 is a parametric static analyzer based on abstract

interpretation [5, 6] for Go applications. GoLiSA exploits
LiSA [9] (Library for Static Analysis), a library that pro-
vides a complete infrastructure for the development of static
analyzers. In particular, LiSA implements several standard
3https://github.com/commercionetwork/commercionetwork
4https://digital-strategy.ec.europa.eu/en/policies/eidas-regulation
5Potentially, also the management of smart contracts is feasible. The
CosmWasm (https://cosmwasm.com) module, for example, allows to de-
velop WebAssembly contracts with high level languages such as Rust. This
paper does not focus on such kind of smart contracts.
6https://ignite.com/
7Available at https://github.com/UniVE-SSV/go-lisa/tree/soap22

https://golang.org/ref/spec#For_statements
https://commercio.network/
https://github.com/commercionetwork/commercionetwork
https://digital-strategy.ec.europa.eu/en/policies/eidas-regulation
https://cosmwasm.com
https://ignite.com/
https://github.com/UniVE-SSV/go-lisa/tree/soap22

Ensuring Determinism in Blockchain Software with GoLiSA: An Industrial Experience Report Conference’17, July 2017, Washington, DC, USA

State

Consensus and Networking
Layers

Database of blocks

Messages

TCPTCP

ABCI
via

TCP

Commercio
Network

Cosmos SDK

Application Layer

 Commercio
Module 1

 Commercio
Module 2

...

Figure 1. Commercio.network architecture.

components of abstract interpretation-based analyzers, such
as an extensible control-flow graph representation (CFG), a
common analysis framework for the development of new
static analyses, and fixpoint algorithms on LiSA CFGs.
The high-level analysis process of GoLiSA is reported in

Fig. 2. The analysis starts with the Go front-end translating
Go source code into LiSA CFGs that are then passed to LiSA,
which analyzes them in a generic language-independent way.
In particular, CFGs are passed to an interprocedural analy-
sis, managing fixpoint computations. This component relies
on a call graph to resolve calls and compute CFGs results.
Each individual fixpoint relies on language-specific analysis-
independent semantics for CFG nodes, which is directly pro-
vided by GoLiSA: each node is rewritten into a sequence of
symbolic expressions, modelling the effects that executing a
high-level instruction has on the program state through low-
level atomic semantic operations. Symbolic expressions are
processed and analyzed by an abstract state [8], consisting of
a heap domain (analyzing dynamic memory) and a value do-
main (analyzing program variables and memory locations).
The abstract state computes a sound over-approximation of
the symbolic expression’s effects according to their specific
logic, and this can later be exploited by semantic checks to
issue warnings that are of interest for the user.

4.1 How GoLiSA Ensures Determinism
In order to ensure determinism, GoLiSA provides two dif-
ferent checkers for Cosmos SDK: one based on a syntactic
approach, and the other based on a semantic approach. In
the former case, a syntax checker analyzes the program state-
ments by basing its checks purely on the syntax of a program
(e.g., if a certain Go statement appears in the source code, if
a certain function/method is declared, etc.). Part of determin-
ism is ensured by GoLiSA’s syntactic checkers, performing
a pattern matching on the program of interest to detect

Abstract state

Value domain

Heap domain

Go front-endGo application

LiSA

CFG fix-point

Semantic checker
Analysis dump

CFG dump
Warnings

LiSA CFGs

…

Interprocedural
analysis

analysis results

compute results

Analysis results

abstract
semantics

to
symbolic

expressions

GoLiSA

Figure 2. GoLiSA execution.

signatures of methods and statements that compromise de-
terminism. In the second case, instead, a semantic checker
analyzes the program statements inferring information and
relationships between the components, then giving meaning
(semantic) to the various parts of the program. In particular,
it is necessary to specify an abstract state [8], that consist
of a combination between an abstract domain that models
the dynamic memory (the heap domain) and an abstract do-
main that tracks (abstract) values of program variables and
dynamic memory locations (the value domain). In this paper,
the analysis module of GoLiSA is instantiated as follows:
non-interference analysis [10, 11] as value domain, tracking
the integrity level (low or high) of each program variable
or memory location, and monolithic heap analysis as heap
domain, abstracting any concrete memory location allocated
in a single abstract location.
The non-interference analysis implemented in GoLiSA

treats sources of non-determinism with a low-integrity level
and any blockchain state modifier or response to a transac-
tion request with a high-integrity level. At this point, deter-
minism is ensured by GoLiSA thanks to its semantic checkers
that, (i) performs a syntactic analysis to extract the compo-
nents which might bring non-deterministic behaviors, (ii) ex-
ecutes the aforementioned semantic analysis, and (iii) checks
the absence of (implicit or explicit) flows from low-integrity
level variables (i.e., sources of non-determinism) to high-
integrity level components (i.e., blockchain state modifier
or responses to transaction requests) within the program.
Note that, a single non-deterministic component does not
necessarily lead to non-determinism issues but it depends
on whether it affects the global state of the blockchain or
compromises the response to a transaction request. For this
reason, it is necessary to track the flows of non-deterministic

Conference’17, July 2017, Washington, DC, USA L. Olivieri, F. Tagliaferro, V. Arceri, M. Ruaro, L. Negrini, A. Cortesi, P. Ferrara, F. Spoto, and E. Talin

data in the program, in order to ensure that they involve
critical components.

5 Bug Fixing in Blockchain
Considering the software development workflow, the cost

of detecting and fixing software defects increases exponen-
tiallywith time. Fixing bugs and running code in a blockchain
simulation is as easy as using the available tools for the un-
derlying platform. Instead, when dealing with software that
runs in the nodes of a live public blockchain, patching the
bugs becomes critical and recovering the caused problems
even more difficult. When it comes to blockchain, this fac-
tor gets more problematic by the lack of best practices and
standard architectures [2, 13, 16].

In the case of permissionless blockchain, when a bug gets
found and faults happen because of it, the caused problems
are generally immutable and cannot be fixed. This immutabil-
ity is achieved through a consensus mechanism that makes
it difficult, or impossible, to withdraw transactions from the
blockchain. In practice, the network majority should agree
on rolling back to the state before an incident, effectively
rewriting the history of the blockchain. However, the more
a blockchain network increases in popularity, the more it is
tricky to undertake such a turnaround. Part of the network
may be interested in ignoring to resolve the consequences
of a fault and continue as if nothing happened, leading to
an independent blockchain, also known as a hard fork. For
instance, this happened currently only once since the birth
of the Ethereum blockchain because of the DAO attack [15].

In the case of permissioned blockchains, such as Commer-
cio.network, it is possible to patch a buggy code through
network governance. Typically, there is a limited subset of
peers, with the power to propose a plan for halting, modi-
fying, and restarting the blockchain with updated software,
carefully migrating the state of the previous version. This
kind of blockchain solution is often adopted in the industrial
field, especially for enterprise or consortium blockchains.
However, enforcing an update leads to a stop of services and
data management problems. To reduce these problems, the
Cosmos SDK offers an automatic process to apply blockchain
upgrades, improving the synergy between the on-chain mod-
ule upgrade, responsible for halting the chain, and an off-
chain daemon capable of installing a new binary of the node
software at the right time and autonomously restarting the
node. Commercio.network reports that it is going to adopt
this strategy, improving maintenance costs and reducing
downtime for the consortium of validators.
In any case, it is of substantial importance to detect any

kind of problem as soon as possible and, above all, before
the software is used to run nodes of a blockchain network.

6 Limits of the Cosmos SDK Toolbelt
A toolbelt is a set of applications useful for code develop-

ment and software maintenance.

For the Cosmos SDK, there is a limited number of tools
tailored to the framework. For instance, Ignite CLI 8 (for-
merly known as Starport) is the most popular platform to
build, launch, and maintain blockchain applications based on
Cosmos SDK. Although it facilitates software development,
nevertheless it has limitations. One of its most used features
is to start a blockchain node in development with live reload-
ing, i.e., when Ignite CLI detects that the source code of a
Cosmos application has changed, it restarts the build process
and then it launches a network using the updated software.
However, at the time of writing, developers using it can-
not observe non-determinism problems while testing the
application. In fact, the execution happens on a single node
network and therefore the underlying consensus mechanism
will never conflict as a cause of non-deterministic executions.
Hence, some kinds of issues related to non-determinism are
really difficult to be detected during the development phase,
since there is only one participant. Still, it is possible to use
the Go toolbelt for testing a Cosmos SDK application. But
this leads to limitations in the development, since testing
and verification phase have not been designed ad hoc for
blockchain frameworks.

As reported by the company, determinism is hard to ensure
also after a complete test cycle, without the help of formal
verification. Moreover, the complete test cycle is expensive
in terms of resources and requires tools able to simulate
the blockchain consensus. First, testing happens on a local-
net. That is, a lightweight network running in a sandbox
environment, destroyed and relaunched before each test.
Commercio.network relies on a containerized local-net so-
lution. Then, at least one network exposed to the public is
required. These are fully-fledged networks, mirroring the
functionalities of the current main network version (test-net)
or featuring experimental features (dev-net). Similarly to a
main-net, these networks should be composed of a diversi-
fied ecosystem of devices with a significant amount of nodes,
different operative systems, system settings, geolocations,
and so forth. However, also this level of testing does not
guarantee the detection of faults, because it is not a sound
procedure. If it is based on a limited number of transactions,
then the problems might exist but remain undetected, since
the conditions required to spot them have not been reached.

About analysis and verification tools, it is possible to start
verifying Cosmos SDK applications with tools for the Go
language, to score the code quality and detect issues. For in-
stance, the Commercio.network company performs different
iterations with Go analyzers on its code and publicly shares
the results with the community using a Go Report Card9.
However, as reported by the Commercio.network company,

8https://github.com/ignite-hq/cli
9https://goreportcard.com/report/github.com/commercionetwork/
commercionetwork

https://github.com/ignite-hq/cli
https://goreportcard.com/report/github.com/commercionetwork/commercionetwork
https://goreportcard.com/report/github.com/commercionetwork/commercionetwork

Ensuring Determinism in Blockchain Software with GoLiSA: An Industrial Experience Report Conference’17, July 2017, Washington, DC, USA

Table 2. Analysis evaluation
Affected # Unaffected Exec. time Avg time per file # Bugs

2 files 246 files 54m 27s 13.17s 2

the code coverage reached by dynamic testing is limited be-
cause the standard Go test suite has not been designed for
blockchain development. Nevertheless, the advancement of
coverage gets publicly reported, too10.
We should recall that bugs in the testing tools exist, too,

along with incorrect test design and malformed testware.
Incomplete or incorrect sets of test cases that do not fail,
displaying the green OK flag, add a false sense of trust to the
programmer, which could let their guard down. Therefore,
it is important to apply formal verification to detect prob-
lems since the early stages of implementation. Indeed, these
tools are not enough to guarantee the safety of blockchain
software because, while analyzing generic properties for Go,
they do not take into account the particularities of blockchain
development nor specifically the problems related to the Cos-
mos SDK framework. Hence, the need to develop customized
tools for the framework of interest, as in our case the analysis
on determinism with GoLiSA.

7 Code Evaluation
All the evaluations have been performed on a HP Elite-

Book 850G4 equippedwith an Intel Core i7-7500U at 2.70/2.90
GHz and 16 GB of RAM memory running Windows 10 Pro
64bit, Oracle JDK version 13, and Go version 1.17. Our target
application is Commercio.network v2.2.011, and in particular
the evaluation is performed on the 248 Go files (14961 LoCs)
contained in the repository.

7.1 The Analysis Choice
When carrying out an analysis it is necessary to take into
account not only the properties it investigates but also the
quality of its results and how these can impact on a possi-
ble bug fixing phase. As described in Sect. 4.1, the GoLiSA
analyzer provides two different kinds of checkers.
The syntactic checkers are generally much faster than

semantic ones because they do not perform heavy computa-
tions and reasoning about the code. However, by not think-
ing about semantics, they cannot correctly distinguish one
program behavior from another. Hence, in the case of de-
terminism, they indiscriminately deny all the black-listed
signatures, generating several false positives alerts. During
the patching phase, this involves a considerable expenditure
of human effort in terms of time and capacity to filter the
true positive alerts over the bug fixing. Manually filtering
the results of the analysis could take several hours for each
single alert.

10https://app.codecov.io/gh/commercionetwork
11https://github.com/commercionetwork/commercionetwork/tree/v2.2.0

The semantic checkers are more time-consuming in terms
of analysis, but their cost is amortized considerably in the
patching phase. In fact, they reason about the semantics of
the program, discarding the parts of code that semantically
are not relevant for the properties of analysis. Hence, it is
possible to automatically reduce the number of false posi-
tives, thus limiting human effort. For these reasons, in the
next section, the bug investigation will present results only
with a semantic checker.

7.2 Bug Discussion
The result of the analysis performed by GoLiSA highlighted
two problems regarding the same insidious issue (Table 2).
Something similar affected an older version of the Cosmos
SDK, which was reported by the NIST database as "vulnerable
to a consensus halt due to non-deterministic behaviour" [14]
caused by the use of the local clock time, obtained with the
Go library time.

Bug #1. The bug appears in the keeper package of the mod-
ule commerciokyc, in the method Membership. It is located
at line 89 of file keeper.go12. In a nutshell, the method al-
lows assigning a Commercio.network membership of the
given type to the specified user. As shown in Fig. 3, the issue
involves two main components: the method time.Now and
the return of an error wrapped error. The first is a standard
API of the Go language providing the current time of the de-
vice on which it runs. The second returns an error (wrapped
with the Wrap method of the Cosmos SDK library13) to the
method caller, leading to a transaction failure. Transaction
executions among nodes must return a common result to
achieve an update of the global status of the blockchain
through the consensus mechanism. However, the current
time provided by time.Now could be different from device to
device because of custom settings (e.g. unsynchronized time,
different time zones, etc.). Then, the same code execution
on the nodes of blockchain network could result in different
values, breaking the consensus.

An invocation to the buggy method may return an error
or not depending on the result of the following guard:

expited_at.Before(time.Now())
Inspecting the invocations of AssignMembership, it can be
found that the input variable expited_at is a timestamp
computed with a support function that adds one year to the
block time. Nodes with the current local time set to a times-
tamp that makes the guard evaluate to true (a timestamp
bigger than expited_at is enough) will mark transactions
invoking this code as failing since it returns an error. If the
majority of nodes behave in this way, a denial of service
may occur and block the assignment of new memberships.

12Source code available at: https://github.com/commercionetwork/
commercionetwork/blob/3e02d5e761eab3729ccf6f874d3c929342e4230c/x/
commerciokyc/keeper/keeper.go#L89
13https://docs.cosmos.network/master/building-modules/errors.html

https://app.codecov.io/gh/commercionetwork
https://github.com/commercionetwork/commercionetwork/tree/v2.2.0
https://github.com/commercionetwork/commercionetwork/blob/3e02d5e761eab3729ccf6f874d3c929342e4230c/x/commerciokyc/keeper/keeper.go#L89
https://github.com/commercionetwork/commercionetwork/blob/3e02d5e761eab3729ccf6f874d3c929342e4230c/x/commerciokyc/keeper/keeper.go#L89
https://github.com/commercionetwork/commercionetwork/blob/3e02d5e761eab3729ccf6f874d3c929342e4230c/x/commerciokyc/keeper/keeper.go#L89
https://docs.cosmos.network/master/building-modules/errors.html

Conference’17, July 2017, Washington, DC, USA L. Olivieri, F. Tagliaferro, V. Arceri, M. Ruaro, L. Negrini, A. Cortesi, P. Ferrara, F. Spoto, and E. Talin

func (k Keeper) AssignMembership (c t x sdk . Context , / ∗ [. . .] ∗ / ,
e x p i t e d _ a t t ime . Time) e r r o r {

/ ∗ [. . .] ∗ /

i f e x p i t e d _ a t . Be fo r e (t ime .Now ()) {
r e t u r n sdkE r r . Wrap (sdkE r r . ErrUnknownRequest , fmt . S p r i n t f (

" I n v a l i d e x p i r y date : %s " , e x p i t e d _ a t))
}

/ ∗ [. . .] ∗ /
}

Figure 3. Bug #1 A snippet of the AssignMembership method not
ensuring determinism in the commerciokyc module.

However, in this case, the blockchain is not compromised
only if malicious actors control the majority of the nodes,
but the problem is due to a code bug during software de-
velopment that do not allow to reach a majority on the
blockchain with the same result. Because of these reasons,
AssignMembership does not ensure determinism, and its
invocation might break the consensus mechanism.

Bug #2. The bug appears in the keeper package of the
commerciomintmodule, in themethod BurnCCC. It is located
at line 174 of file keeper.go14. In a nutshell, this method
allows burning (i.e., removing) an amount of currency to
the conversion rate stored in a position, retrievable from
the keeper’s store with a user account address and an id.
If successful, BurnCCC gives back to the user the collateral
amount, then updates or deletes the considered position but
only if enough time, called freeze period, has passed since its
creation. Similarly to Bug #1, as shown in Fig. 4, also this
issue involves two main components: the non-deterministic
method time.Now and the return of a wrapped error.
An invocation to the buggy method may return an error

or not depending on the result of the following guard:
time.Now().Sub(pos.CreatedAt) <= freezePeriod

The pos variable represents a position stored in the mod-
ule’s keeper and it is used to read its self-documenting field
CreatedAt. The timestamp freezePeriod is read from the
store of the module, too. Nodes with the current local time
set to a timestamp that makes the guard evaluate to true
(a timestamp in the past is enough) will mark transactions
invoking this code as failing since it returns an error. If the
majority of nodes behave in this way, a denial of service may
occur and block the redemption of funds in the positions.
This is not caused by malicious actors but is due to a code
bug during software development, similarly to the previous
case. Because of these reasons, BurnCCC doesn’t ensure de-
terminism, and its invocation might break the consensus
mechanism.

Bug patching. After a deep investigation, the company re-
ports that no incidents or transaction failures happened be-
cause of these bugs during the live period of the release
14Source code available at: https://github.com/commercionetwork/
commercionetwork/blob/3e02d5e761eab3729ccf6f874d3c929342e4230c/x/
commerciomint/keeper/keeper.go#L174

func (k Keeper) BurnCCC (c t x sdk . Context , u s e r sdk . AccAddress ,
i d s t r i n g , burnAmount sdk . Coin) e r r o r {

pos , found : = k . Ge tPo s i t i o n (c tx , user , i d)
i f ! found { / ∗ [. . .] ∗ / }

/ / Con t ro l i f p o s i t i o n i s a lmost i n f r e e z i n g pe r i od
f r e e z e P e r i o d : = k . Ge tF r e e z ePe r i od (c t x)
i f t ime .Now () . Sub (pos . CreatedAt) <= f r e e z e P e r i o d {

r e t u r n sdkE r r . Wrap (sdkE r r . E r r I n v a l i dR equ e s t , " cannot burn
p o s i t i o n ye t i n the f r e e z e pe r i od ")

}

/ ∗ [. . .] ∗ /
}

Figure 4. Bug #2 A snippet of the BurnCCC method not ensuring
determinism in the commerciomint module.

V2.2.0. Both bugs were patched in the major release v3.0.0.
Then, we performed the analysis on this release and we
could not find problems. The issue has been resolved by get-
ting the time directly from the current Tendermint block
header, a source that is both deterministic and supported by
consensus. More in detail, the Cosmos SDK context method
ctx.BlockTime() has been used instead of time.Now()
when the current time was needed.

Dynamic Testing Considerations. The packages contain-
ing the bugs were tested with the standard Go testing frame-
work and the libraries supported by Cosmos SDK, obtaining
a satisfying level of code coverage. In particular, for the
keeper packages of commerciomint and commerciokyc at
version v2.2.0 test coverage is respectively 83.9% and 91.9%.
However, both defects could not be detected by the test cases,
due to incorrect initialization of testware. First, the Cosmos
SDK blockchain Context passed to the keeper methods is
set to the current time, with the invocation of the instruc-
tions WithBlockTime(time.Now()). Also, a different usage
of time.Now has been leveraged for the initialization of test-
ing variables and struct fields regarding time. These are defi-
nitely some testing anti-patterns, since not only blockchain
code involved in consensus but also tests should be determin-
istic. Therefore, it is recommended to use a fixed timestamp
in tests, wherever some logic depends on the use of time.

8 Conclusion
Blockchain technology has been consideredmature enough

to bring blockchain-oriented software even for enterprise re-
alities. General-purpose languages, such as Go, increase pro-
ductivity and reduce development costs. Companies adopt
them for developing DApps. Still, blockchain code needs
to be verified to improve its quality and reduce almost ir-
reversible incidents. Available tools often lack controls to
detect specific problems in blockchain frameworks, such as
ensuring determinism. In this paper, we have shown through
GoLiSA and the implementation of semantic checkers how
it is possible to detect bugs of industrial code that break
the deterministic execution of the blockchain, reducing the
human effort in the phase of bug fixing and maintenance.

https://github.com/commercionetwork/commercionetwork/blob/3e02d5e761eab3729ccf6f874d3c929342e4230c/x/commerciomint/keeper/keeper.go#L174
https://github.com/commercionetwork/commercionetwork/blob/3e02d5e761eab3729ccf6f874d3c929342e4230c/x/commerciomint/keeper/keeper.go#L174
https://github.com/commercionetwork/commercionetwork/blob/3e02d5e761eab3729ccf6f874d3c929342e4230c/x/commerciomint/keeper/keeper.go#L174

Ensuring Determinism in Blockchain Software with GoLiSA: An Industrial Experience Report Conference’17, July 2017, Washington, DC, USA

References
[1] Christopher Allen. 2016. The Path to Self-Sovereign Iden-

tity. http://www.lifewithalacrity.com/2016/04/the-path-to-self-
soverereign-identity.html Accessed: March 2, 2022.

[2] Amiangshu Bosu, Anindya Iqbal, Rifat Shahriyar, and Partha
Chakraborty. 2019. Understanding the motivations, challenges and
needs of Blockchain software developers: a survey. Empir. Softw. Eng.
24, 4 (2019), 2636–2673. https://doi.org/10.1007/s10664-019-09708-7

[3] Ethan Buchman. 2016. Tendermint: Byzantine fault tolerance in the age
of blockchains. Ph.D. Dissertation. University of Guelph.

[4] Commercio.network. 2022. Commercio.network - White Paper. https:
//commercio.network/project/ Accessed: March 9 2022.

[5] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A
Unified Lattice Model for Static Analysis of Programs by Construction
or Approximation of Fixpoints. In Conference Record of the Fourth
ACM Symposium on Principles of Programming Languages, Los Angeles,
California, USA, January 1977, Robert M. Graham, Michael A. Harrison,
and Ravi Sethi (Eds.). ACM, 238–252. https://doi.org/10.1145/512950.
512973

[6] Patrick Cousot and Radhia Cousot. 1979. Systematic Design of Program
Analysis Frameworks. In Conference Record of the Sixth Annual ACM
Symposium on Principles of Programming Languages, San Antonio, Texas,
USA, January 1979, Alfred V. Aho, StephenN. Zilles, and Barry K. Rosen
(Eds.). ACM Press, 269–282. https://doi.org/10.1145/567752.567778

[7] Jack B. Dennis and Earl C. Van Horn. 1966. Programming semantics for
multiprogrammed computations. Commun. ACM 9, 3 (1966), 143–155.
https://doi.org/10.1145/365230.365252

[8] Pietro Ferrara. 2016. A generic framework for heap and value analyses
of object-oriented programming languages. Theor. Comput. Sci. 631
(2016), 43–72. https://doi.org/10.1016/j.tcs.2016.04.001

[9] Pietro Ferrara, Luca Negrini, Vincenzo Arceri, and Agostino Cortesi.
2021. Static analysis for dummies: experiencing LiSA. In SOAP@PLDI

2021: Proceedings of the 10th ACM SIGPLAN International Workshop
on the State Of the Art in Program Analysis, Virtual Event, Canada, 22
June, 2021, Lisa Nguyen Quang Do and Caterina Urban (Eds.). ACM,
1–6. https://doi.org/10.1145/3460946.3464316

[10] Joseph A. Goguen and José Meseguer. 1982. Security Policies and
Security Models. In 1982 IEEE Symposium on Security and Privacy,
Oakland, CA, USA, April 26-28, 1982. IEEE Computer Society, 11–20.
https://doi.org/10.1109/SP.1982.10014

[11] Joseph A. Goguen and José Meseguer. 1984. Unwinding and Inference
Control. In Proceedings of the 1984 IEEE Symposium on Security and Pri-
vacy, Oakland, California, USA, April 29 - May 2, 1984. IEEE Computer
Society, 75–87. https://doi.org/10.1109/SP.1984.10019

[12] J. Kwon and E. Buchman. 2019. Cosmos whitepaper. https://v1.cosmos.
network/resources/whitepaper Accessed: February 18, 2022.

[13] Maaruf Ali Mahdi H. Miraz. 2020. Blockchain Enabled Smart Contract
Based Applications: Deficiencies with the Software Development Life
Cycle Models. Baltica Journal 33 (2020), 101–116.

[14] NIST. 2021. CVE-2021-41135 Detail. https://nvd.nist.gov/vuln/detail/
CVE-2021-41135 Accessed: Febrauary 20, 2022.

[15] Nathaniel Popper. 2016. A Hacking of More Than $50 Million Dashes
Hopes in the World of Virtual Currency. The New York Times (2016).
https://www.nytimes.com/2016/06/18/business/dealbook/hacker-
may-have-removed-more-than-50-million-from-experimental-
cybercurrency-project.html Accessed: March 3, 2022.

[16] Simone Porru, Andrea Pinna, Michele Marchesi, and Roberto Tonelli.
2017. Blockchain-Oriented Software Engineering: Challenges and
New Directions. In 2017 IEEE/ACM 39th International Conference on
Software Engineering Companion (ICSE-C). 169–171. https://doi.org/
10.1109/ICSE-C.2017.142

[17] Gavin Wood. 2014. Ethereum: A secure decentralised generalised
transaction ledger. (2014). https://ethereum.github.io/yellowpaper/
paper.pdf Accessed: March 7, 2022.

http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
https://doi.org/10.1007/s10664-019-09708-7
https://commercio.network/project/
https://commercio.network/project/
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/567752.567778
https://doi.org/10.1145/365230.365252
https://doi.org/10.1016/j.tcs.2016.04.001
https://doi.org/10.1145/3460946.3464316
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1984.10019
https://v1.cosmos.network/resources/whitepaper
https://v1.cosmos.network/resources/whitepaper
https://nvd.nist.gov/vuln/detail/CVE-2021-41135
https://nvd.nist.gov/vuln/detail/CVE-2021-41135
https://www.nytimes.com/2016/06/18/business/dealbook/hacker-may-have-removed-more-than-50-million-from-experimental-cybercurrency-project.html
https://www.nytimes.com/2016/06/18/business/dealbook/hacker-may-have-removed-more-than-50-million-from-experimental-cybercurrency-project.html
https://www.nytimes.com/2016/06/18/business/dealbook/hacker-may-have-removed-more-than-50-million-from-experimental-cybercurrency-project.html
https://doi.org/10.1109/ICSE-C.2017.142
https://doi.org/10.1109/ICSE-C.2017.142
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

	Abstract
	1 Introduction
	2 Ensuring Determinism in Blockchain
	3 Commercio.network and Cosmos SDK
	4 An Overview of GoLiSA
	4.1 How GoLiSA Ensures Determinism

	5 Bug Fixing in Blockchain
	6 Limits of the Cosmos SDK Toolbelt
	7 Code Evaluation
	7.1 The Analysis Choice
	7.2 Bug Discussion

	8 Conclusion
	References

