
Speeding up Static Analysis with the Split Operator
Vincenzo Arceri

vincenzo.arceri@unipr.it
University of Parma

Parma, Italy

Greta Dolcetti
greta.dolcetti@studenti.unipr.it

University of Parma
Parma, Italy

Enea Zaffanella
enea.zaffanella@unipr.it
University of Parma

Parma, Italy

Abstract
In the context of static analysis based on Abstract Interpreta-
tion, we propose a new abstract operator modeling the split
of control flow paths: the goal of the operator is to enable a
more efficient analysis when using abstract domains that are
computationally expensive, having no effect on precision.
Focusing on the case of conditional branches guarded by
numeric linear constraints, we provide a preliminary experi-
mental evaluation showing that, by using the split operator,
we can achieve significant efficiency improvements for a
static analysis based on the domain of convex polyhedra. We
also briefly discuss the applicability of this new operator to
different, possibly non-numeric abstract domains.

CCS Concepts: • Theory of computation → Program
analysis; • Software and its engineering → Automated
static analysis.

Keywords: Abstract Interpretation, Static Analysis, Abstract
Operators

ACM Reference Format:
VincenzoArceri, Greta Dolcetti, and Enea Zaffanella. 2023. Speeding
up Static Analysis with the Split Operator. In Proceedings of ACM
Conference (Conference’17). ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
In static analysis tools based on Abstract Interpretation (AI)
it is common to define a neat separation between the AI
framework and the abstract domains: the two components
communicate by invoking abstract domain operators, such
as meet, join, widening and narrowing, whose results are
combined to correctly characterize the abstract semantics
of the program. Among the operations needed during static
analysis, one allows to filter an abstract element 𝐴 ∈ A

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

!" (! < #$)

%&_'(!)(!);

%&_'(*'(!);

+,)+

A

-&./ A

A

"!,'+0(! < #$)
A!<#$

A!≥#$-&./ "!,'+0(! ≥ #$)
!" (! < #$)

%&_'(!)(!);

%&_'(*'(!);

+,)+

A

A!<#$

A!≥#$

).,!'(! < #$)

(a) Using filter operator

!" (! < #$)

%&_'(!)(!);

%&_'(*'(!);

+,)+

A

-&./ A

A

"!,'+0(! < #$)
A!<#$

A!≥#$-&./ "!,'+0(! ≥ #$)
!" (! < #$)

%&_'(!)(!);

%&_'(*'(!);

+,)+

A

A!<#$ A!≥#$

).,!'(! < #$)

(b) Using split operator

Figure 1. Abstract modeling of a conditional branch.

over a given predicate 𝑝 ∈ Pred, returning a refined abstract
element 𝐴𝑝 approximating those states of 𝐴 that satisfy 𝑝:

filter : A × Pred → A.

This operator goes by different names depending on the
context. Abstract domains adopt a rather specific terminol-
ogy, which often highlights the kind of predicates that are
supported; for instance, the numeric domains in Apron [18]
provide meet_lincons_array for filtering on a set of linear
constraints; similarly, we can find add_cons for the polyhe-
dra domains in the PPLite library [8] and add_congruences
for the grid domain [2] in the PPL library [4]. Static anal-
ysis tools usually adopt a more generic name, sometimes
promoting the operator to an abstract instruction in their
program representation: for instance, we have Comparison
in IKOS AR [9], S_assume in MOPSA [20] and assume in
both Clam/Crab [16] and LiSA [12]. The filter operator can
be used to enforce properties that are known to hold at a spe-
cific program point: for instance, after a call to a mock library
function, we can filter the abstract state on the post-condition
of the function. The same operator is also commonly used to
model the conditional split of the control flow of the program.
For instance, the code fragment

if (i < 50) do_this(i); else do_that(i);

can be modeled as shown in Figure 1a: the input abstract
element 𝐴 is cloned to obtain two copies; these are then
filtered on the predicate 𝑝 = (𝑖 < 50) for the then branch
and on its complement ¬𝑝 = (𝑖 ≥ 50) for the else branch.

This implementation approach is both correct and precise,
but in some contexts could incur avoidable inefficiencies, as it

https://orcid.org/0000-0002-5150-0393
https://orcid.org/0000-0002-2983-9251
https://orcid.org/0000-0001-6388-2053
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA V. Arceri, G. Dolcetti, and E. Zaffanella

replicates most of the work done to evaluate the complemen-
tary predicates in the two program branches. The overhead
is probably negligible, hence acceptable, as long as consider-
ing the most efficient abstract domains, such as the domain
of intervals [10]. Things might be different when adopting
more expensive and precise abstract domains, such as the
domain of convex polyhedra [11]; in these cases, it might
be worth exploring alternative implementation strategies
to better preserve efficiency. In particular, in Figure 1b we
show an alternative approach where the conditional branch
is modeled using the split operator:

split : A × Pred → A × A.

This new abstract domain operator, initially proposed in [7],
filters the input abstract element on a predicate 𝑝 and on its
complement ¬𝑝 at the same time, allowing for the factoriza-
tion of any replicated computational effort. Note that, if no
optimization is possible, the abstract domain can just resort
to the default implementation, which clones the abstract
element and invokes (twice) the filter operator.
While this idea is both simple and intuitively promising,

to the best of our knowledge its effectiveness has never been
evaluated in the context of classical AI-based static program
analysis:1 the goal of the current work is to provide such an
evaluation. To this end, we first describe the design changes
that are required, both at the interface and at the implemen-
tation levels, in order to accomodate the new split operator
into an existing static analysis tool. Then, we show the re-
sults of our preliminary experiments, which focus on splits
defined on numerical predicates and on the abstract domain
of convex polyhedra.
In principle, the high level specification of the split op-

erator allows for a general adoption, independently from
the considered abstract domain. However, since its end goal
is to enable efficiency improvements (leaving correctness
and precision unaffected), its actual effectiveness necessarily
depends on profitability considerations (e.g., the computa-
tional cost of filtering on a specific class of predicates and the
frequency of these operations in a typical analysis). Hence,
we will also briefly discuss the applicability of the approach
to more general contexts.

2 Splitting Polyhedra on Linear Constraints
In this section we briefly discuss how a split operator defined
on a numerical predicate can be efficiently implemented on
the domain of convex polyhedra [11]. For space reasons,
we will only hint at the optimizations, without a proper
explanation of their details: these are available in release
0.10.1 of the open source library PPLite [5, 6, 8].

The split operator proposed in [7] for the domain of convex
polyhedra focuses on the case of rational splits: since in this

1The experimental evaluation reported in [7] targets the analysis of a par-
ticular class of hybrid systems.

x0

x1

Pthen

Pelse

c

(a) Split on 𝑐 ≡ (2𝑥0 + 2𝑥1 ≤ 5)
x0

x1

Pelse Pthen

c

(b) Split on 𝑐 ≡ (𝑥0 = 3)
Figure 2. Examples of integral splits.

case the constraints added to the then and else branches
are complementary, the new abstract operator can factorize
most of the work, leading to a rather systematic halving
of the computational effort.2 However, often the predicate
guarding a conditional branch is defined on variables having
an integral datatype: in this case the use of a rational split
produces a safe result, but typically incurs a precision loss.
Therefore, we now focus on integral splits. Consider first the
case of a split based on a (strict or non-strict) linear inequality
constraint.

Example 2.1. Let 𝑃 ≡ {0 ≤ 𝑥0 ≤ 3, 0 ≤ 𝑥1 ≤ 3} be a
polyhedron in R2 and consider a conditional branch guarded
by constraint 𝑐 ≡ (2𝑥0 + 2𝑥1 ≤ 5). If the variables are known
to be integral, this guard can be refined to 𝑐then ≡ (𝑥0 +
𝑥1 ≤ 2); the corresponding integral complement constraint is
𝑐else ≡ (𝑥0 + 𝑥1 ≥ 3). Hence, we obtain 𝑃then ≡ {0 ≤ 𝑥0, 0 ≤
𝑥1, 𝑥0 + 𝑥1 ≤ 2} and 𝑃else ≡ {𝑥0 ≤ 3, 𝑥1 ≤ 3, 𝑥0 + 𝑥1 ≥ 3},
shown in Figure 2a.

The two constraints 𝑐then and 𝑐else are not complemen-
tary when considered in the real relaxation R2 and hence
the optimized implementation of the integral split operator
cannot be as effective as that for the rational case. However,
since the two constraints have the same slope, the implemen-
tation can still factor out most of the (uselessly duplicated)
work done when computing the scalar products of each gen-
erator of 𝑃 with the two constraints, reducing the overall
computational cost. Note that the described integral refine-
ment process is generally incomplete: there are cases where
one of the branches has no integral solution, but the abstract
domain is unable to detect it due to the real relaxation (unless
performing further expensive checks).
We now consider the case of an integral split based on

a linear (dis-) equality constraint. This case turns out to be
trickier, since the domain of polyhedra, like most numeri-
cal domains based on convex approximations, is unable to
precisely filter on a disequality constraint.

Example 2.2. For polyhedron 𝑃 of Example 2.1, consider
a branch guarded by constraint 𝑐 ≡ (𝑥0 = 2). We can be
2Readers interested in the details of the optimized implementation of ratio-
nal splits are referred to [7, Section 5].

Speeding up Static Analysis with the Split Operator Conference’17, July 2017, Washington, DC, USA

precise on the equality branch 𝑃then ≡ {𝑥0 = 2, 0 ≤ 𝑥1 ≤ 3};
on the other branch we may try to lower the disequality into
a pair of inequalities, intuitively computing 𝑃<

else ≡ {0 ≤
𝑥0 ≤ 1, 0 ≤ 𝑥1 ≤ 3} and 𝑃>

else ≡ {𝑥0 = 3, 0 ≤ 𝑥1 ≤ 3};
unfortunately, this effort towards precision is later made
useless by the join computation 𝑃else = 𝑃<

else ⊎ 𝑃>
else = 𝑃 .

Some attempts can be made to identify those lucky cases
where a disequality can be successfully refined into an in-
equality constraint, as in the following example.

Example 2.3. When splitting polyhedron 𝑃 of Example 2.1
on constraint 𝑐 ≡ (𝑥0 = 3), we obtain 𝑃then ≡ {𝑥0 = 3, 0 ≤
𝑥1 ≤ 3}, 𝑃<

else ≡ {0 ≤ 𝑥0 ≤ 2, 0 ≤ 𝑥1 ≤ 3} and 𝑃>
else ≡ ⊥;

hence, as shown in Figure 2b, 𝑃else = 𝑃<
else ⊎ 𝑃>

else = 𝑃<
else.

The approach varies depending on the considered static
analysis tool. For instance, Crab is able to detect a lucky case
when the disequality constraint 𝑐≠ satisfies rather specific
conditions:

(a) 𝑐≠ ≡ (𝑥𝑖 ≠ 𝑥 𝑗) and 𝑃 implies either 𝑐≤ ≡ (𝑥𝑖 ≤ 𝑥 𝑗) or
𝑐≥ ≡ (𝑥𝑖 ≥ 𝑥 𝑗); or

(b) 𝑐≠ ≡ (𝑥𝑖 ≠ expr) and there exists 𝑘 ∈ Z such that 𝑃
implies 𝑐𝑘 ≡ (expr = 𝑘),3 and 𝑃 also implies either
𝑐≤ ≡ (𝑥𝑖 ≤ 𝑘) or 𝑐≥ ≡ (𝑥𝑖 ≥ 𝑘).

What should be noted here is that, in the lack of a specific
operator for the integral split, the analysis tool is forced to
perform several calls to lower level abstract operators (en-
tailment checks, evaluations of the value range of a linear
expression, etc.), with a corresponding multiplication of the
overheads that are inherently incurred when interfacing the
static analysis tool with a generic abstract domain compo-
nent; hence, the more precise (and expensive) domains will
likely witness a degradation of their overall efficiency.

3 Enabling Splits in a Static Analysis
For our experiments we have chosen Clam/Crab, which is
the Abstract Interpretation engine included in the SeaHorn
framework [15]. The Clam component uses Clang/LLVM
to obtain the LLVM bitcode of the program under analysis
and then generates the corresponding CrabIR representa-
tion [16]; this is processed by the Crab component, which
computes the abstract semantics according to the chosen
analysis configuration. The latter includes, among many
other parameters, the choice of the abstract domain: Crab
supports many (combinations of) abstract domains and in-
cludes interfaces towards the domains provided by libraries
Apron [18] and ELINA [22].

The addition of a new abstract operator requires that suit-
able changes are applied to both the abstract domain and the
fixpoint engine components of the static analysis tool.

3I.e., all the variables 𝑥 𝑗 occurring in expr are bound in 𝑃 to constant values.

Changes in the abstract domain component. We have
first implemented the rational and integral split operators for
the polyhedra domains included in the PPLite library [5, 6, 8]
and we made them available (by adding a non-generic, ad
hoc function) in the corresponding Apron interface wrapper.
Then, we have extended the generic abstract domain inter-
face in Crab by adding a new method for the split operator:
this invokes the new abstract operator when the interface
is instantiated with a PPLite domain, while resorting to the
unoptimized implementation (based on the filter operator)
when it is instantiated with the other domains.

void foo() {int i=0; while(i<50) i=bar(i);}

(a) A simple C function.

(b) Original CrabIR CFG. (c) CrabIR CFG with split.

Figure 3. The addition of split statements in CrabIR.

Changes in the fixpoint approximation engine. The
adaptation of the fixpoint engine required more work than
expected. This is mainly due to a CrabIR language design
choice (inherited from IKOS AR form [9]) whereby all con-
ditional branches are expressed in a declarative way, com-
bining a non-deterministic branch with the addition, in each
target of the branch, of assume abstract statements encod-
ing the branch condition (see the CFG in Figure 3b for an
example); roughly speaking, the unoptimized implementa-
tion of the conditional branch is hard coded in the CrabIR
representation, preventing the application of the split op-
erator. As a workaround, we enriched CrabIR by adding a
new abstract statement, called split, and then modified
Clam to generate this new statement whenever translating
a numerical conditional branch (see the CFG in Figure 3c).
Branches based on Boolean and pointer tests are not affected
and hence maintain the declarative encoding.

The other main change to the fixpoint computation engine
regards the choice of where to store the invariants computed
during the analysis. Exploiting the declarative encoding of
conditional branches, by default Crab annotates each node in
the CFG with the pairs ⟨pre, post⟩ of invariants that are valid
at the start (pre) and at the end (post) of the node. However,
when the CFG is modified by introducing split statements
this approach is no longer adequate, because we would need

Conference’17, July 2017, Washington, DC, USA V. Arceri, G. Dolcetti, and E. Zaffanella

to store two different invariants (postthen and postelse) at the
exit of those nodes endingwith a split statement. Therefore,
we modified the engine so as to store an invariant along each
edge of the CFG, as well as storing an invariant on those
nodes where a widening/narrowing is computed. At the end
of the analysis, in a finalization phase, the edge invariants
are used to compute the ⟨pre, post⟩ pairs of each CFG node,
which requires computing many joins; while this simplistic
approach incurs avoidable inefficiencies, it preserves the
expectations of the other Clam/Crab components, that have
not been modified.

It is worth noting that our current prototype is considering
a subset of all the numerical branches that, in principle, could
benefit from the split operator. Namely:

• rational splits are disregarded because they only make
sense when branching on a floating point condition;
currently, Clam/Crab provides limited support for float-
ing point datatypes and safely ignores these conditions,
yielding a pure non-deterministic branch;

• similarly, Clam/Crab safely ignores integral splits when
the corresponding predicates are linear inequalities de-
fined on unsigned variables; this is done to avoid poten-
tial safety issues related to the wrap-around semantics
as defined in C-like languages;

• finally, our prototype currently disregards those im-
plicit numerical branches encoded in CrabIR select
statements, which implement conditional assignments.

As a consequence we conjecture that, in our experimental
evaluation, the efficiency improvements obtainable thanks
to the split operator are underestimated.

4 Experimental Evaluation
Our prototype analyzerwas obtained bymodifying the dev14
branch of Clam/Crab,4 which is based on LLVM 14. In our
experiments we tried to apply minimal changes to the default
configuration of the analyzer: in particular, we instructed
LLVM to systematically inline function calls, so as to im-
prove the call context sensitivity of the analysis. Note that,
by default, Clam/Crab instructs LLVM to lower all switch
statements, which are thus translated to chains of conditional
branches and hence can benefit of the split optimization.
Table 1 reports the timing results for some of the tests

considered in our preliminary experimental evaluation. We
analyzed programs coming from two different sources. First,
we considered 39 C source files distributed with PAGAI [17]
which are variants of benchmarks taken from the SNU real-
time benchmark suite for WCET (worst-case execution time)
analysis; the results for the 5 tests whose analysis time was
greater than a second are shown in the top half of the table.
Then, we enriched our benchmark suite by also considering a
few Linux drivers from the SVCOMP repository;5 in this case,
4https://github.com/seahorn/clam/tree/dev14
5https://github.com/sosy-lab/sv-benchmarks/c/ldv-linux-4.2-rc1

without splits with splits time
(abridged) test name PPLite ELINA PPLite ratio
adpcm 108.2 (★) 1.6 105.9 1.02
prog9000 31.8 241.1 42.0 0.76
nsichneu 30.9 40.8 21.1 1.46
decompress 5.3 5.5 2.3 2.30
filter 2.5 2.3 2.5 1.00
mmc-host 487.1 435.1 412.9 1.18
firewire 98.7 (★) 92.0 22.7 4.35
hwmon-abituguru3 87.5 91.0 52.8 1.66
media-usb-tm6000 23.2 22.3 12.4 1.87
media-pci-ttpci 12.3 12.9 10.8 1.14
power-bq2415x 10.1 10.9 11.6 0.87
hid-usb 8.6 10.1 6.0 1.43

Table 1. Overall static analysis time without/with splits.

we applied no specific selection criterion and just cherry-
picked a few drivers, shown in the lower half of the table,
having reasonable analysis time.

The 2nd column in Table 1 shows the baseline for the effi-
ciency evaluation, i.e., the overall analysis time in seconds
when using F_Poly, the Cartesian factored convex polyhedra
domain of PPLite; note that we include time spent in pre-
analysis phases (e.g., parsing, LLVM bitcode generation and
Clam preprocessing steps), while excluding post-analysis
phases (e.g., assertion checks based on the results of the anal-
ysis).6 In the 3rd column we show the time obtained when
using the Cartesian factored convex polyhedra domain of
ELINA [22]: this is done to highlight that our starting point
for the efficiency comparison is in line with what is consid-
ered the most efficient library for convex polyhedra. Note
however that ELINA cannot be used as a proper baseline,
as it is well known that, by using machine integers (rather
than the arbitrary precision integers adopted by PPLite), it
sometimes raises overflow exceptions, after which it returns
an over-approximation of the actual result, hence affecting
both the efficiency and the precision of the analysis; these
cases are highlighted in the table using (★).
The 4th column of the table reports the overall analysis

time obtained when enabling the split optimization in our
prototype, while the last column shows the speedup with
respect to the baseline. On the considered tests, we obtain
significant speedups, sometimes beyond our own expecta-
tions. In a few cases we also obtain slowdowns: these seem to
be mainly caused by the unoptimized invariant finalization
phase described in the previous section; by disabling this
phase (leaving invariants on CFG edges), the analysis time
of tests prog9000 and power-bq2415x can be reduced by 9.1
and 3.2 seconds, respectively.

A remarkable side effect of the split optimization is a sig-
nificant reduction in peak memory usage, as highlighted by
the data shown in Table 2. The 2nd and 5th columns of the

6Experiments have been performed on a laptop with an Intel Core i7-
3632QM CPU, 16 GB of RAM and running GNU/Linux 5.15.0-60.

https://github.com/seahorn/clam/tree/dev14
https://github.com/sosy-lab/sv-benchmarks/c/ldv-linux-4.2-rc1

Speeding up Static Analysis with the Split Operator Conference’17, July 2017, Washington, DC, USA

without splits with splits mem
(abridged) test name nodes mem splits nodes mem ratio
adpcm 146 87 34 93 85 1.01
prog9000 1491 1629 275 947 1415 1.15
nsichneu 2004 1591 625 754 628 2.53
decompress 1032 177 266 638 87 2.15
filter 1121 263 187 809 254 1.04
mmc-host 26254 9705 3772 19701 1102 8.81
firewire 9925 7690 2038 6842 282 27.27
hwmon-abituguru3 2653 271 521 2088 130 2.08
media-usb-tm6000 15447 3300 1453 12886 200 16.50
media-pci-ttpci 9057 524 156 5610 147 3.56
power-bq2415x 23763 351 1985 20518 256 1.37
hid-usb 7303 185 1478 4704 119 1.55

Table 2. Number of nodes, splits and maximum RSS.

table show the number of nodes in the CrabIR CFGs gener-
ated without and with the split optimization (note that, in
both cases, we refer to the CFGs after the LLVM inlining
phase). As intuitively suggested by the CFGs in Figure 3,
the decrease in the number of nodes is directly caused by
the introduction of the numerical split statements, whose
number is reported in the 4th column. In the 3rd and 6th
columns of Table 2 we provide an estimation of the peak
memory usage by reporting the maximum RSS (Resident Set
Size) for the two aforementioned configurations (in MB); the
last column of the table shows the ratio of the two memory
measurements. A recent paper [19] proposes a technique to
reduce the memory footprint of the static analysis tool IKOS
(which shares with Crab the main design of the fixpoint ap-
proximation engine). Since the technique adopted in [19] is
completely independent from the split optimization, we con-
jecture that the two optimizations can be applied together,
combining their improvements.
Our experimental evaluation also confirmed that the ab-

stract execution of the split statements using the new split
abstract domain operator has no effect on precision: using
the clam-diff helper tool, we observed no regression when
systematically comparing the invariants produced by the
baseline and the optimized analyses.

5 Conclusions
This paper proposes a new abstract domain operator that is
able to speed up the static analysis when splitting the control
flow path on a predicate and its complement. Even though
our current prototype can only handle a subset of the control
flow splits of the program, it is able to obtain non-trivial
memory and time improvements on several tests, including
both synthetic benchmarks and more realistic programs.
Future work can investigate several directions. First of

all, the current prototype can be extended to enable the
optimization on more kinds of numerical split statements,
e.g., the correct handling of branches on unsigned integral
expressions and the implicit branches in select statements.

x0

x1

P
<

else

Pthen

P
>

else

c

P
′

Figure 4. Example of split on a powerset domain.

Second, we plan to evaluate the applicability of the ap-
proach to other abstract domains; as briefly discussed before,
while the overall idea is quite general, its effectiveness de-
pends on profitability considerations. In particular, we be-
lieve that abstract domains supporting the representation
of disjunctive information are promising candidates for an
optimized split operator. As a first example, one could con-
sider the finite powerset of convex polyhedra [3]. Note that,
when using a disjunctive domain, it is clearly possible to
workaround the limitations of convex over-approximations
and thus improve the precision of splits. For instance, in
Figure 4 we consider the split of the powerset 𝑆 = {𝑃, 𝑃 ′}
on the equality constraint 𝑐 , where 𝑃 and 𝑐 are those de-
scribed in Example 2.2; hence, by avoiding the convex poly-
hedral hull approximation, we can obtain 𝑆then = {𝑃then}
and 𝑆else = {𝑃<

else, 𝑃
>
else, 𝑃

′}; note that 𝑃 ′, which is not di-
rectly affected by the split operator, can be simply “moved”
into 𝑆else, avoiding useless and costly copy operations.

Other disjunctive abstract domains that are probablyworth
considering are LDDs [14] and RDDs [13] (Linear and Range
Decision Diagrams), both available in Crab. We also plan to
investigate the application of split operators to non-numeric
domains, such as ROBDD-based domains for Boolean formu-
lae or DFA-based abstract domains for string analysis [1, 21];
for instance, we could explore an optimized split operator
for conditional branches based on string predicates, such
as str.startsWith("prefix"), whose default implemen-
tations on the domain of DFAs are often expensive.
Finally, it would be interesting to extend our experimen-

tal evaluation to different static analysis tools; while we
conjecture that similar results can be obtained for other
tools analysing the low level program representation (e.g.,
IKOS [9] and PAGAI [17]), it is more difficult to predict the
effectiveness of the optimization for those tools targeting
the AST-based high level representations (e.g., MOPSA [20]).

Acknowledgments
The authors would like to express their gratitude to Jorge
A. Navas for his help in getting them acquainted with the
inner workings of Clam/Crab and for developing helper tool
clam-diff to compare the precision of different analyses.

Conference’17, July 2017, Washington, DC, USA V. Arceri, G. Dolcetti, and E. Zaffanella

References
[1] Vincenzo Arceri, Isabella Mastroeni, and Sunyi Xu. 2020. Static Analy-

sis for ECMAScript String Manipulation Programs. Appl. Sci. 10 (2020),
3525. https://doi.org/10.3390/app10103525

[2] Roberto Bagnara, Katy Louise Dobson, Patricia M. Hill, Matthew
Mundell, and Enea Zaffanella. 2006. Grids: A Domain for Analyzing
the Distribution of Numerical Values. In Logic-Based Program Synthe-
sis and Transformation, 16th International Symposium, LOPSTR 2006,
Venice, Italy, July 12-14, 2006, Revised Selected Papers (Lecture Notes in
Computer Science, Vol. 4407), Germán Puebla (Ed.). Springer, 219–235.
https://doi.org/10.1007/978-3-540-71410-1_16

[3] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. 2007. Widening
operators for powerset domains. Int. J. Softw. Tools Technol. Transf. 9,
3-4 (2007), 413–414. https://doi.org/10.1007/s10009-007-0029-y

[4] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. 2008. The
Parma Polyhedra Library: Toward a complete set of numerical ab-
stractions for the analysis and verification of hardware and soft-
ware systems. Sci. Comput. Program. 72, 1-2 (2008), 3–21. https:
//doi.org/10.1016/j.scico.2007.08.001

[5] Anna Becchi and Enea Zaffanella. 2018. A Direct Encoding for NNC
Polyhedra. In Computer Aided Verification - 30th International Confer-
ence, CAV 2018, Part of the Federated Logic Conference, FloC 2018, Oxford,
UK, July 14-17, 2018, Proceedings, Part I (Lecture Notes in Computer
Science, Vol. 10981), Hana Chockler and Georg Weissenbacher (Eds.).
Springer, 230–248. https://doi.org/10.1007/978-3-319-96145-3_13

[6] Anna Becchi and Enea Zaffanella. 2018. An Efficient Abstract Domain
for Not Necessarily Closed Polyhedra. In Static Analysis - 25th Inter-
national Symposium, SAS 2018, Freiburg, Germany, August 29-31, 2018,
Proceedings (Lecture Notes in Computer Science, Vol. 11002), Andreas
Podelski (Ed.). Springer, 146–165. https://doi.org/10.1007/978-3-319-
99725-4_11

[7] Anna Becchi and Enea Zaffanella. 2019. Revisiting Polyhedral Analysis
for Hybrid Systems. In Static Analysis - 26th International Symposium,
SAS 2019, Porto, Portugal, October 8-11, 2019, Proceedings (Lecture Notes
in Computer Science, Vol. 11822), Bor-Yuh Evan Chang (Ed.). Springer,
183–202. https://doi.org/10.1007/978-3-030-32304-2_10

[8] Anna Becchi and Enea Zaffanella. 2020. PPLite: Zero-overhead en-
coding of NNC polyhedra. Inf. Comput. 275 (2020), 104620. https:
//doi.org/10.1016/j.ic.2020.104620

[9] Guillaume Brat, Jorge A. Navas, Nija Shi, and Arnaud Venet. 2014.
IKOS: A Framework for Static Analysis Based on Abstract Interpre-
tation. In Software Engineering and Formal Methods - 12th Interna-
tional Conference, SEFM 2014, Grenoble, France, September 1-5, 2014.
Proceedings (Lecture Notes in Computer Science, Vol. 8702), Dimitra
Giannakopoulou and Gwen Salaün (Eds.). Springer, 271–277. https:
//doi.org/10.1007/978-3-319-10431-7_20

[10] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A
Unified Lattice Model for Static Analysis of Programs by Construction
or Approximation of Fixpoints. In Conference Record of the Fourth
ACM Symposium on Principles of Programming Languages, Los Angeles,
California, USA, January 1977, Robert M. Graham, Michael A. Harrison,
and Ravi Sethi (Eds.). ACM, 238–252. https://doi.org/10.1145/512950.
512973

[11] Patrick Cousot and Nicolas Halbwachs. 1978. Automatic Discovery
of Linear Restraints Among Variables of a Program. In Conference
Record of the Fifth Annual ACM Symposium on Principles of Program-
ming Languages, Tucson, Arizona, USA, January 1978, Alfred V. Aho,
Stephen N. Zilles, and Thomas G. Szymanski (Eds.). ACM Press, 84–96.
https://doi.org/10.1145/512760.512770

[12] Pietro Ferrara, Luca Negrini, Vincenzo Arceri, and Agostino Cortesi.
2021. Static analysis for dummies: experiencing LiSA. In SOAP@PLDI
2021: Proceedings of the 10th ACM SIGPLAN International Workshop
on the State Of the Art in Program Analysis, Virtual Event, Canada, 22
June, 2021, Lisa Nguyen Quang Do and Caterina Urban (Eds.). ACM,

1–6. https://doi.org/10.1145/3460946.3464316
[13] Graeme Gange, Jorge A. Navas, Peter Schachte, Harald Søndergaard,

and Peter J. Stuckey. 2021. Disjunctive Interval Analysis. In Static
Analysis - 28th International Symposium, SAS 2021, Chicago, IL, USA,
October 17-19, 2021, Proceedings (Lecture Notes in Computer Science,
Vol. 12913), Cezara Dragoi, Suvam Mukherjee, and Kedar S. Namjoshi
(Eds.). Springer, 144–165. https://doi.org/10.1007/978-3-030-88806-0_7

[14] Arie Gurfinkel and Sagar Chaki. 2010. Boxes: A Symbolic Abstract
Domain of Boxes. In Static Analysis - 17th International Symposium, SAS
2010, Perpignan, France, September 14-16, 2010. Proceedings (Lecture
Notes in Computer Science, Vol. 6337), Radhia Cousot and Matthieu
Martel (Eds.). Springer, 287–303. https://doi.org/10.1007/978-3-642-
15769-1_18

[15] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A.
Navas. 2015. The SeaHorn Verification Framework. In Computer Aided
Verification - 27th International Conference, CAV 2015, San Francisco, CA,
USA, July 18-24, 2015, Proceedings, Part I (Lecture Notes in Computer
Science, Vol. 9206), Daniel Kroening and Corina S. Pasareanu (Eds.).
Springer, 343–361. https://doi.org/10.1007/978-3-319-21690-4_20

[16] Arie Gurfinkel and Jorge A. Navas. 2021. Abstract Interpretation of
LLVM with a Region-Based Memory Model. In Software Verification -
13th International Conference, VSTTE 2021, NewHaven, CT, USA, October
18-19, 2021, and 14th International Workshop, NSV 2021, Los Angeles, CA,
USA, July 18-19, 2021, Revised Selected Papers (Lecture Notes in Computer
Science, Vol. 13124), Roderick Bloem, Rayna Dimitrova, Chuchu Fan,
and Natasha Sharygina (Eds.). Springer, 122–144. https://doi.org/10.
1007/978-3-030-95561-8_8

[17] Julien Henry, David Monniaux, and Matthieu Moy. 2012. PAGAI: A
Path Sensitive Static Analyser. In ThirdWorkshop on Tools for Automatic
Program Analysis, TAPAS 2012, Deauville, France, September 14, 2012
(Electronic Notes in Theoretical Computer Science, Vol. 289), Bertrand
Jeannet (Ed.). Elsevier, 15–25. https://doi.org/10.1016/j.entcs.2012.11.
003

[18] Bertrand Jeannet and Antoine Miné. 2009. Apron: A Library of Nu-
merical Abstract Domains for Static Analysis. In Computer Aided Ver-
ification, 21st International Conference, CAV 2009, Grenoble, France,
June 26 - July 2, 2009. Proceedings (Lecture Notes in Computer Science,
Vol. 5643), Ahmed Bouajjani and Oded Maler (Eds.). Springer, 661–667.
https://doi.org/10.1007/978-3-642-02658-4_52

[19] Sung Kook Kim, Arnaud J. Venet, and Aditya V. Thakur. 2020. Memory-
Efficient Fixpoint Computation. In Static Analysis - 27th International
Symposium, SAS 2020, Virtual Event, November 18-20, 2020, Proceedings
(Lecture Notes in Computer Science, Vol. 12389), David Pichardie and
Mihaela Sighireanu (Eds.). Springer, 35–64. https://doi.org/10.1007/
978-3-030-65474-0_3

[20] Raphaël Monat, Abdelraouf Ouadjaout, and Antoine Miné. 2021. A
Multilanguage Static Analysis of Python Programs with Native C
Extensions. In Static Analysis - 28th International Symposium, SAS 2021,
Chicago, IL, USA, October 17-19, 2021, Proceedings (Lecture Notes in
Computer Science, Vol. 12913), Cezara Dragoi, Suvam Mukherjee, and
Kedar S. Namjoshi (Eds.). Springer, 323–345. https://doi.org/10.1007/
978-3-030-88806-0_16

[21] Luca Negrini, Vincenzo Arceri, Pietro Ferrara, and Agostino Cortesi.
2021. Twinning Automata and Regular Expressions for String Static
Analysis. In Verification, Model Checking, and Abstract Interpretation
- 22nd International Conference, VMCAI 2021, Copenhagen, Denmark,
January 17-19, 2021, Proceedings (Lecture Notes in Computer Science,
Vol. 12597), Fritz Henglein, Sharon Shoham, and Yakir Vizel (Eds.).
Springer, 267–290. https://doi.org/10.1007/978-3-030-67067-2_13

[22] Gagandeep Singh, Markus Püschel, and Martin T. Vechev. 2017. Fast
polyhedra abstract domain. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, Paris,
France, January 18-20, 2017, Giuseppe Castagna and AndrewD. Gordon
(Eds.). ACM, 46–59. https://doi.org/10.1145/3009837.3009885

https://doi.org/10.3390/app10103525
https://doi.org/10.1007/978-3-540-71410-1_16
https://doi.org/10.1007/s10009-007-0029-y
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1007/978-3-319-96145-3_13
https://doi.org/10.1007/978-3-319-99725-4_11
https://doi.org/10.1007/978-3-319-99725-4_11
https://doi.org/10.1007/978-3-030-32304-2_10
https://doi.org/10.1016/j.ic.2020.104620
https://doi.org/10.1016/j.ic.2020.104620
https://doi.org/10.1007/978-3-319-10431-7_20
https://doi.org/10.1007/978-3-319-10431-7_20
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/3460946.3464316
https://doi.org/10.1007/978-3-030-88806-0_7
https://doi.org/10.1007/978-3-642-15769-1_18
https://doi.org/10.1007/978-3-642-15769-1_18
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-030-95561-8_8
https://doi.org/10.1007/978-3-030-95561-8_8
https://doi.org/10.1016/j.entcs.2012.11.003
https://doi.org/10.1016/j.entcs.2012.11.003
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-030-65474-0_3
https://doi.org/10.1007/978-3-030-65474-0_3
https://doi.org/10.1007/978-3-030-88806-0_16
https://doi.org/10.1007/978-3-030-88806-0_16
https://doi.org/10.1007/978-3-030-67067-2_13
https://doi.org/10.1145/3009837.3009885

	Abstract
	1 Introduction
	2 Splitting Polyhedra on Linear Constraints
	3 Enabling Splits in a Static Analysis
	4 Experimental Evaluation
	5 Conclusions
	Acknowledgments
	References

