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Abstract
In the context of abstract interpretation-based static analysis, we propose a new abstract operator modeling the split of control
flow paths: the goal of the operator is to enable a more efficient analysis when using abstract domains that are computationally
expensive, having no negative effect on precision, and occasionally resulting in a more precise analysis. We focus on the
case of conditional branches guarded by numeric linear constraints, including implicit numerical branches. We provide an
experimental evaluation of real-world test cases, showing that by using the split operator we can achieve significant efficiency
improvements with respect to the classical approach for a static analysis based on the domain of convex polyhedra. We also
briefly discuss the applicability of this new operator to different, possibly non-numeric abstract domains.

Keywords Abstract interpretation · Static analysis · Abstract operators

1 Introduction

In static analysis tools based on abstract interpretation (AI)
it is common to define a neat separation between the AI
framework and the abstract domains: the two components
communicate by invoking abstract domain operators, such
as meet, join, widening and narrowing, whose results are
combined to correctly characterize the abstract semantics
of the program. Among the operations needed during static
analysis, one allows to filter an abstract element 𝐴 ∈ A over a
given predicate 𝑝 ∈ Pred, returning a refined abstract element
𝐴𝑝 approximating those states of 𝐴 that satisfy 𝑝:

filter : A × Pred→A.

This operator goes by different names depending on the con-
text. Abstract domains adopt a rather specific terminology,
which often highlights the kind of predicates that are sup-
ported; for instance, the numeric domains in Apron [25]
provide meet_lincons_array for filtering on a set of

linear constraints; similarly, we can find add_cons for
the polyhedra domains in the PPLite library [10] and
add_congruences for the grid domain [4] in the PPL li-
brary [6]. Static analysis tools usually adopt a more generic
name, sometimes promoting the operator to an abstract
instruction in their program representation: for instance,
we have Comparison in IKOS AR [12], S_assume in
MOPSA [28] and assume in both Clam/Crab [21] and
LiSA [16, 31]. The filter operator can be used to enforce
properties that are known to hold at a specific program point:
for instance, after a call to a mock library function, we can
filter the abstract state on the post-condition of the function.

The same operator is also commonly used to model the
conditional split of the control flow of the program. For
instance, the code fragment

if (i < 50)
do_this(i);

else
do_that(i);

can be modeled as shown in Fig. 1: the input abstract element
𝐴 is cloned to obtain two copies; these are then filtered by
the predicate 𝑝 = (𝑖 < 50) for the then branch and on its
complement ¬𝑝 = (𝑖 ≥ 50) for the else branch.

While this implementation approach is both correct and
precise, in some contexts it could incur avoidable inefficien-
cies, as it replicates most of the work done to evaluate the
complementary predicates in the two program branches. The
overhead is probably negligible, hence acceptable, as long
as considering the most efficient abstract domains, such as
the domain of intervals [14]. Things might be different when
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Fig. 1 Modeling a branch using the filter operator

adopting more expensive and precise abstract domains, such
as the domain of convex polyhedra [15]; in these cases, it
might be worth exploring alternative implementation strate-
gies to better preserve efficiency. In particular, in Fig. 2 we
show an alternative approach where the conditional branch
is modeled using the split operator:

split : A × Pred→A ×A.

This new abstract domain operator, initially proposed in [9],
filters the input abstract element on a predicate 𝑝 and on its
complement ¬𝑝 at the same time, allowing for the factor-
ization of any replicated computational effort. Note that, if
no optimization is possible, the abstract domain can just re-
sort to the default implementation, which clones the abstract
element and invokes (twice) the filter operator.

While this idea is both simple and intuitively promising,
to the best of our knowledge its effectiveness has never been
evaluated in the context of classical AI-based static pro-
gram analysis:1 the goal of this paper is to provide such an
evaluation. To this end, we focus on the numerical context
considering the abstract domain of convex polyhedra [15], a
precise but computationally expensive relational domain. In
particular, we define the split operator on linear predicates,
describing how it behaves when the predicate deals with ra-
tional or integral variables. Then, we describe the design
changes that are required, both at the interface and at the im-
plementation levels, in order to accommodate the new split
operator into an existing static analysis tool. Finally, we show
the results of our experimental evaluation, assessing the ef-
fectiveness of the split operator with respect to the classical
filter operator for the abstract domain of convex polyhedra.

It is important to highlight that, in principle, the high-level
specification of the split operator allows for a general adop-
tion, independently from the considered abstract domain.
However, since its end goal is to enable efficiency improve-
ments (while preserving correctness and leaving precision
mostly unaffected), its actual effectiveness necessarily de-
pends on profitability considerations: these should take into

1 The experimental evaluation reported in [9] targets the analysis of
a particular class of hybrid systems.

Fig. 2 Modeling a branch using the split operator

proper account the computational cost of filtering on a spe-
cific class of predicates, the frequency of these operations in
a typical analysis, and the efficiency gains that could be ob-
tained by the addition of a specialized split operator. Hence,
we will also briefly discuss the applicability of the approach
in more general contexts.

Paper structure In Sect. 2, we consider the implementa-
tion of the filter and split operators on the domain of topo-
logically closed convex polyhedra. In Sect. 2.1 we provide
a high-level description of the rational filter operator, iden-
tifying those implementation steps that are computationally
more expensive; then, in Sect. 2.2 we describe the rational
split operator proposed in [10], highlighting the efficiency
gains that can be obtained by adopting a specialized imple-
mentation. In Sect. 2.3, we discuss how the approach can
be extended to the case of integral splits, i.e., those splits
defined on a linear inequality predicate whose variables can
only assume integral values; in Sect. 2.4 we also consider
the special case of integral splits defined on a linear equality
constraint. In Sect. 3 we briefly describe the static analysis
tool chosen for the experimental evaluation. In particular,
we will focus on the changes that have to be applied to the
tool in order to accommodate the new abstract operator, af-
fecting both the abstract domain component and the fixpoint
approximation engine. The results of the experimental eval-
uation are described in Sect. 4. We conclude in Sect. 5, also
discussing the extension of the approach to different abstract
domains and different static analysis tools.

This paper is a revised and extended version of [3]. The
main extension is in Sect. 2, where we provide a rather de-
tailed description of the algorithms implementing several
variants of the split operator on the domain of convex poly-
hedra. The prototype implementation described in [3] has
been revised and extended: the PPLite library has been en-
hanced to include the optimized version of all variants of
the integral split operator, as described in Sect. 2; also, the
modified static analysis tool is now able to apply the split op-
erator to some implicit control flow splits that were ignored
before. Moreover, we extended the experimental evaluation
in Sect. 4 by considering a larger set of real-world test cases.
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2 Splitting polyhedra on linear constraints

In this section, we discuss how a split operator defined on
a numerical predicate can be efficiently implemented on the
domain of convex polyhedra [15]. While assuming some fa-
miliarity with the basic notions of lattice theory [11], for
clarity of exposition we start by introducing some terminol-
ogy and notation.

A non-trivial, non-strict linear inequality constraint 𝛽 de-
fines a closed half-space con({𝛽}) of the vector space R𝑛;
we write ¬𝛽 to denote the complement of 𝛽, i.e., the open
half-space con({¬𝛽}) = R𝑛 \ con({𝛽}); we will also write
cl(¬𝛽) to denote the topologically closed (i.e., non-strict)
complement of constraint 𝛽.

A not necessarily topologically closed (NNC) convex
polyhedron 𝜙 = con(C) ⊆ R𝑛 is defined as the set of so-
lutions of a finite system C of (strict or non-strict) linear
inequality constraints; equivalently, 𝜙 = gen(G) can be de-
fined as the set obtained by suitably combining the elements
(lines, rays, points and closure points) of a generator system
G = 〈𝐿, 𝑅, 𝑃,𝐶〉. The Double Description framework [29]
exploits both representations; we write 𝜙 ≡ (C,G) to denote
that 𝜙 = con(C) = gen(G). The set P𝑛 of all NNC polyhe-
dra on R

𝑛, partially ordered by set inclusion, is a lattice
〈P𝑛,⊆, ∅,R

𝑛,∩,�〉, where the emptyset and R𝑛 are the bot-
tom and top elements, the binary meet operator is set in-
tersection and the binary join operator ‘�’ is the convex
polyhedral hull. Readers interested in more details on the
algorithms defined on the abstract domain of NNC convex
polyhedra are referred to [7, 8, 10].

The set CP𝑛 of topologically closed polyhedra on the
vector space R𝑛 is a sublattice of P𝑛. While being in general
less precise, topologically closed polyhedra are preferred
when considering the case of variables that can only assume
integral values, since in such a context any strict inequality
constraint can be safely refined to obtain a more precise
non-strict inequality; hence, we can describe a topologically
closed polyhedron 𝜙 = gen(G) using a simpler generator
system G = 〈𝐿, 𝑅, 𝑃〉, having no closure point component𝐶.

The algorithms defined to work on the domain of topo-
logically closed polyhedra, having to deal with fewer special
cases, happen to be simpler to design, implement and jus-
tify. Hence, for exposition purposes, in the following we
will focus our explanations on this simpler abstract domain.
Moreover, we will only provide high level sketches of the ac-
tual implementations, ignoring the handling of corner cases
(e.g., the detection of empty results), as well as some auxil-
iary steps such as the computation of minimal forms for the
systems of constraints. We stress that our sketchy descrip-
tions of the algorithms are only meant to highlight the more
expensive computational steps to hint at the corresponding
optimizations that can be obtained by adopting the new ab-
stract operator. Readers interested in the low-level details are

Pseudocode 1 (Filter operator)
1: function filter(𝜙, 𝛽)
2: let 𝜙 ≡ 〈C,G〉 and S = sat_cons(C,G);
3: P ← scalar_products(G, 𝛽);
4: (G

+,G0,G−) ← partition(G,P);
5: G

★
← combine-adj(G+, G− , P, S);

6: C1←C ∪ {𝛽}; ⊲ build result
7: if is_equality(𝛽) then
8: G1←G

0
∪ G

★;
9: else

10: G1←G
+
∪ G

0
∪ G

★;
11: end if
12: let 𝜙1 ≡ 〈C1,G1〉;
13: return 𝜙1;
14: end function

referred to the implementation made available in the open
source library PPLite [7, 8, 10].2

2.1 Filtering on a linear constraint

In Pseudocode 1, we show a function adding a linear equality
or non-strict inequality constraint 𝛽 to (the constraint system
C defining) the topologically closed polyhedron 𝜙 ∈ CP𝑛,
thereby implementing the filter operator. In the Double De-
scription framework, this actually corresponds to the incre-
mental Chernikova conversion procedure [13].

The most expensive computational steps of this function
are those in lines 3–5; after computing the scalar products
P of all the generators in G with the input constraint 𝛽, on
line 4 the generator system is partitioned into G+, G0 and
G
− using the sign of each scalar product; then, on line 5, the

generators in G+ and G− are combined so as to produce G★.
Lines 6–12 compose the Double Description for the resulting
polyhedron: note that the generators in G− are discarded as
they violate constraint 𝛽; the same happens for those in G+,
if 𝛽 is an equality constraint.

Function combine-adj, computing G★, is described
in Pseudocode 2: here each generator 𝑔+ ∈ G+ (a genera-
tor strictly satisfying the constraint 𝛽) is linearly combined
with each generator 𝑔− ∈ G− (a generator violating the con-
straint) using the previously computed scalar products 𝑝+
and 𝑝− , so as to produce a new generator 𝑔★ that saturates
the constraint 𝛽 (i.e., 𝑔★ satisfies the corresponding equal-
ity constraint and hence intuitively becomes a new element
of G0). Note that, on line 5, predicate adjacent(𝑔+, 𝑔− ,S)
checks that the two considered generators are geometrically
adjacent in polyhedron 𝜙, so as to eagerly discard those pairs
whose combination would necessarily produce a redundant
generator. This adjacency test, which combines some the-
oretical results and implementation techniques proposed in

2 https://github.com/ezaffanella/PPLite.
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Pseudocode 2 (Combining adjacent generators)
1: function combine-adj(G+, G− , P, S)
2: G

∗
← ∅;

3: for all 𝑔+ ∈ G+ do
4: for all 𝑔− ∈ G− do
5: if adjacent(𝑔+, 𝑔− ,S) then
6: let 𝑝+ = P[𝑔+] and 𝑝− = P[𝑔−];
7: 𝑔★← combine(𝑔+, 𝑔− , 𝑝+, 𝑝−);
8: G

★
←G

★
∪ {𝑔★};

9: end if
10: end for
11: end for
12: return G★;
13: end function

[27] and [19], turns out to be critical for the efficiency of
the whole procedure; it uses the saturation matrix S, which
is cached in the representation of polyhedron 𝜙 and records,
for each generator 𝑔 ∈ G, the set of constraints in C that are
saturated by 𝑔. Note that the update of the saturation matrix
for the result 𝜙1 is left implicit in Pseudocode 1.

Example 1
In Fig. 3 (adapted from [10]), we show an example of appli-
cation of the filter operator. The polyhedron 𝜙 = gen(G) ∈
CP2 on the upper part of the figure is described by gen-
erator system G = 〈𝐿, 𝑅, 𝑃〉, where 𝐿 = 𝑅 = ∅ and 𝑃 =
{𝑝0, 𝑝1, 𝑝2, 𝑝3, 𝑝4}. (Since there are no lines or rays, for
simplicity in the following we will only refer to the point
component 𝑃 of the generator system G.) When filtering 𝜙
using constraint 𝛽, the generator system is partitioned in

G
+ = {𝑝0, 𝑝2, 𝑝3, 𝑝4},

G
0 = ∅,

G
− = {𝑝1}.

Then, we compute

G
★ = combine-adj (G+,G− ,P,S) = {𝑝5, 𝑝6},

where 𝑝5 and 𝑝6 (which are shown in red in the lower part of
the figure) are obtained by combining, respectively, 𝑝0, 𝑝2 ∈

G
+ with 𝑝1 ∈ G

− . Note that there is no need to linearly
combine 𝑝3, 𝑝4 ∈ G

+ with 𝑝1 ∈ G
− , because these pairs of

generators are not adjacent: their combination would result
in redundant points (which are shown in gray in the lower
part of the figure). Hence, the new generator system is

G
′ = G+ ∪ G0

∪ G
★

= {𝑝0, 𝑝2, 𝑝3, 𝑝4} ∪ ∅ ∪ {𝑝5, 𝑝6}

= {𝑝0, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6},

Fig. 3 Filtering on a linear constraint

which represents the filtered polyhedron

𝜙′ = filter (𝜙, 𝛽) = gen(G′).

2.2 Rational split on a linear inequality

The split operator proposed in [9, Sect. 5] was focusing on the
case of rational splits on linear (strict or non-strict) inequal-
ities, i.e., splits on predicates to be interpreted on an abstract
domain modeling non-integral valued variables; the operator
was defined for both convex polyhedra domains P𝑛 and CP𝑛.
In the context of the verification of hybrid systems [17], ra-
tional splits can be used to dynamically partition the abstract
element describing the states reaching an automaton loca-
tion to better approximate a continuous flow relation that is
not piecewise constant. A similar application of the rational
split operator is found in the abstract solving of a non-linear
geometric CSP (Constraint Satisfaction Problem) [32, 34],
where the current search space is partitioned into subdo-
mains so as to refine the following constraint propagation
steps. Rational splits are also useful as helper operators when
implementing powerset abstract domains: for instance, given
two finite sets 𝑆1, 𝑆2 of polyhedra, the algorithm checking
whether 𝑆1 is geometrically covered by 𝑆2, i.e., whether or
not the subset inclusion (∪ 𝑆1) ⊆ (∪ 𝑆2) holds, typically re-
quires the splitting of those polyhedra in 𝑆1 that are not
included in a polyhedron in 𝑆2.

As discussed in [9], in order to obtain precise approxi-
mations, the rational split operator should be defined on the
abstract domain P𝑛 of NNC polyhedra, which provides full
support for strict inequalities. In this case, it is possible to
implement the split operator so that for each 𝜙 ∈ P𝑛 and 𝛽 a
non-strict linear inequality constraint, split(𝜙, 𝛽) = (𝜙1, 𝜙2)

will satisfy
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Pseudocode 3 (Filter-based rational split)
1: function filter-based-Q-split(𝜙, 𝛽)
2: 𝜙′ ← 𝜙; ⊲ deep copy
3: 𝛽′ ← cl(¬𝛽); ⊲ non-strict complement
4: 𝜙1← filter (𝜙, 𝛽); ⊲ then branch
5: 𝜙2← filter (𝜙′, 𝛽′); ⊲ else branch
6: return 𝜙1, 𝜙2;
7: end function

– 𝜙1 = 𝜙 ∩ con({𝛽});
– 𝜙2 = 𝜙 ∩ con({¬𝛽});
– 𝜙1 ∪ 𝜙2 = 𝜙; and
– 𝜙1 ∩ 𝜙2 = ∅.

When adopting the abstract domainCP𝑛, we necessarily have
to consider a non-strict variant of the rational split operator;
by using the non-strict complement of 𝛽, we obtain that
split(𝜙, 𝛽) = (𝜙1, 𝜙

′

2) satisfies

– 𝜙1 = 𝜙 ∩ con({𝛽});
– 𝜙′2 = 𝜙 ∩ con({cl(¬𝛽)}); and
– 𝜙1 ∪ 𝜙

′

2 = 𝜙,

but in general 𝜙1 and 𝜙′2 may intersect.
The classical, filter-based implementation of a rational

split on the domain CP𝑛 is shown in Pseudocode 3, which
can be seen to closely follow the informal specification given
when describing Fig. 1: the filter operator is invoked twice,
using the non-strict inequality 𝛽 and its non-strict comple-
ment 𝛽′ = cl(¬𝛽) on two identical copies of the input poly-
hedron.3 In order to fully appreciate the intrinsic overheads
incurred by this simple approach, one should consider the
code that would be obtained by inlining the source code for
the two function calls filter (𝜙, 𝛽) and filter (𝜙′, 𝛽′) at
lines 4–5 of Pseudocode 3. The key observations are that
𝜙 = 𝜙′ and the filtering constraints 𝛽 and 𝛽′ only differ in the
sign of their coefficients. As a consequence, in the second
call to function filter:

1. The scalar productsP computed in line 3 of Pseudocode 1
can be obtained by negating those computed in the first
call of the function;

2. The partitioning of the generator system in line 4 of Pseu-
docode 1 can be easily obtained by the one computed in
the first call, by simply swapping the roles of G+ and G− ;

3. Since the adjacency test and the linear combination helper
functions are both symmetric in their arguments,4 the

3 While in our pseudocode we adopt a functional programming style,
the actual implementation uses destructive updates whenever possible;
the use of 𝜙′ and the comment in line 2 are meant to highlight that,
in such an implementation, a deep copy of the input polyhedron is
required.

4 Namely, both adjacent(𝑔+, 𝑔− , S) = adjacent(𝑔− , 𝑔+, S) and
combine(𝑔+, 𝑔− , 𝑝+, 𝑝− ) = combine(𝑔− , 𝑔+, 𝑝− , 𝑝+) always hold.

Pseudocode 4 (Rational split)
1: function Q-split(𝜙, 𝛽)
2: let 𝜙 ≡ 〈C,G〉 and S = sat_cons(C,G);
3: P ← scalar_products(G, 𝛽);
4: (G

+,G0,G−) ← partition(G,P);
5: G

★
← combine-adj(G+, G− , P, S);

6: C1←C ∪ {𝛽}; ⊲ then branch
7: G1←G

+
∪ G

0
∪ G

★;
8: let 𝜙1 ≡ 〈C1,G1〉;
9: C2←C ∪ {cl(¬𝛽)}; ⊲ else branch

10: G2←G
−
∪ G

0
∪ G

★;
11: let 𝜙2 ≡ 〈C2,G2〉;
12: return 𝜙1, 𝜙2;
13: end function

previously computed set G★ can be reused as it is, in the
second call.

Hence, it is possible to design an optimized version of the
split operator where, intuitively, the result of the second call
of the filter function is obtained by reusing the intermedi-
ate results of the first call. In particular, no additional scalar
product, adjacency test and linear combination needs to be
computed. This is shown in Pseudocode 4, whose only dif-
ferences with respect to Pseudocode 1 are in lines 9–11. The
experimental evaluation reported in [9, Table 6], which is
based on version 0.4 of the PPLite library, confirms that an
implementation of the rational split operator based on Pseu-
docode 4 is able to systematically halve the computational
cost incurred by the classical implementation based on Pseu-
docode 3.

2.3 Integral split on a linear inequality

It is often the case that the predicate guarding a conditional
branch is defined on program variables having an integral
datatype: in these cases, the use of the rational split operator
to model the conditional branch would produce a safe result
(i.e., a correct over-approximation), but it would typically
incur a precision loss. Therefore, we now turn our attention
to the specification of integral splits. Consider first the case
of a split based on a (strict or non-strict) linear inequality
constraint.

Example 2
Let 𝑃 = con({0 ≤ 𝑥0 ≤ 3,0 ≤ 𝑥1 ≤ 3}) be a polyhedron in
CP2 and consider a conditional branch guarded by constraint
𝑐 ≡ (2𝑥0 + 2𝑥1 ≤ 5). When applying the rational split opera-
tor, we would compute (𝑃1, 𝑃2) = Q-split (𝑃, 𝑐), where

𝑃1 = con({0 ≤ 𝑥0,0 ≤ 𝑥1,2𝑥0 + 2𝑥1 ≤ 5}),

𝑃2 = con({0 ≤ 𝑥0 ≤ 4,0 ≤ 𝑥1 ≤ 4,2𝑥0 + 2𝑥1 ≥ 5}).
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Fig. 4 Integral split on 𝑐 ≡ (2𝑥0 + 2𝑥1 ≤ 5)

If the variables are known to be integral, the guard constraint
𝑐 can be refined to obtain

𝑐then = Z_refine(𝑐) ≡ (𝑥0 + 𝑥1 ≤ 2);

from this, we obtain the corresponding integral complement

𝑐else = Z_complement(𝑐then) ≡ (−𝑥0 − 𝑥1 ≤ −3).

Hence, by implementing the split operation using two calls of
the filter operator, we would obtain the more precise results

𝑃then = filter (𝑃, 𝑐then)

= con({0 ≤ 𝑥0,0 ≤ 𝑥1, 𝑥0 + 𝑥1 ≤ 2}),

𝑃else = filter (𝑃, 𝑐else)

= con({𝑥0 ≤ 3, 𝑥1 ≤ 3, 𝑥0 + 𝑥1 ≥ 3}),

shown in Fig. 4.

The implementation approach informally described in the
example above is the one usually adopted when modeling
integral splits. The filter-based integral split function (Pseu-
docode 5) differs with respect to its rational variant (Pseu-
docode 3) in lines 3–4, which compute the integral refine-
ment 𝛽1 and complement 𝛽2; in the integral case, we have
𝛽1 ≠ 𝛽 or 𝛽2 ≠ cl(¬𝛽) or both (as was the case in Exam-
ple 2); also, 𝛽1 and 𝛽2 are non-strict inequality constraints,
even when the splitting constraint 𝛽 is a strict inequality. Note
that the described integral refinement process is generally in-
complete: there are cases where one of the branches has no
integral solution, but the abstract domain of convex polyhe-
dra is unable to detect this integral inconsistency due to the
intrinsic real relaxation (unless performing further checks,
which are usually avoided since they are rather expensive).

As was the case for the rational split operator, an improved
implementation strategy for the integral split should try to
identify those computations that are uselessly replicated in
the filter-based approach of Pseudocode 5. However, since
in this case the two integral complementary constraints 𝛽1

Pseudocode 5 (Filter-based integral split on inequality)
1: function filter-based-Z-split-on-inequality(𝜙,
𝛽)

2: 𝜙′ ← 𝜙; ⊲ deep copy
3: 𝛽1← Z_refine(𝛽);
4: 𝛽2← Z_complement(𝛽1);
5: 𝜙1← filter (𝜙, 𝛽1); ⊲ then branch
6: 𝜙2← filter (𝜙′, 𝛽2); ⊲ else branch
7: return 𝜙1, 𝜙2;
8: end function

Pseudocode 6 (Integral split on inequality)
1: function Z-split-on-inequality(𝜙, 𝛽)
2: let 𝜙 ≡ 〈C,G〉 and S = sat_cons(C,G);
3: 𝛽1← Z_refine(𝛽);
4: 𝛽2← Z_complement(𝛽1);
5: P1← scalar_products(G, 𝛽1);
6: P2← adjust_products(P1,G, 𝛽1, 𝛽2);
7: return Z-split-aux(C, G, S, 𝛽1, P1, 𝛽2, P2);
8: end function

and 𝛽2 are not complementary when considered in the real
relaxation R𝑛, such an implementation cannot be as simple
and effective as that for the rational case.

Nonetheless, it can be observed that the two filtering con-
straints 𝛽1 and 𝛽2 still happen to have the same slope: namely,
while having a different inhomogeneous term (e.g., in Exam-
ple 2, we have 2 in 𝑐then and −3 in 𝑐else), the homogeneous
coefficients of the variables only differ in their sign, as was the
case in the rational case. This property is suitably exploited
when defining the Z-split-on-inequality function in
Pseudocode 6: after computing, in line 5, the scalar products
P1 using constraint 𝛽1, in line 6 the corresponding scalar
products P2 for 𝛽2 are obtained by “adjusting” those in P1:
in practice, each scalar product in P2 is computed, starting
from the corresponding scalar product in P1, by a constant
number of arbitrary precision arithmetic operations. In con-
trast, the number of operations required for each full (i.e.,
non-adjusted) scalar product computation is linear in the di-
mension 𝑛 of the vector space; this is one of the overheads
incurred by calling filter (𝜙′, 𝛽2) in Pseudocode 5.

Having obtained P1 and P2, the procedure goes on by
calling the auxiliary function Z-split-aux, described in
Pseudocode 7. Here, the partitions of the input generator
system G corresponding to P1 and P2 are computed; note
that, in general, we obtain different sets (even when taking
into account the change of sign). For instance, when con-
sidering Example 2, the four points 𝑝0 = (0,0), 𝑝1 = (0,3),
𝑝2 = (3,3) and 𝑝3 = (3,0) of the input generator system G
are partitioned as follows:

– G+1 = {𝑝0} and G−2 = {𝑝0};
– G0

1 = ∅ and G0
2 = {𝑝1, 𝑝3};
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Pseudocode 7 (Integral split helper)
1: function Z-split-aux(C, G, S, 𝛽1, P1, 𝛽2, P2)
2: (G

+

1 ,G
0
1 ,G

−

1 ) ← partition(G,P1);
3: (G

+

2 ,G
0
2 ,G

−

2 ) ← partition(G,P2);
4: (G

★
1 ,G

★
2 ) ← Z-combine(G+1 , G−1 , P1, G+2 , G−2 ,

P2, S);
5: C1←C ∪ {𝛽1}; ⊲ then branch
6: if is_equality(𝛽1) then
7: G1←G

0
1 ∪ G

★
1 ;

8: else
9: G1←G

+

1 ∪ G
0
1 ∪ G

★
1 ;

10: end if
11: let 𝜙1 ≡ 〈C1,G1〉;
12: C2←C ∪ {𝛽2}; ⊲ else branch
13: G2←G

+

2 ∪ G
0
2 ∪ G

★
2 ;

14: let 𝜙2 ≡ 〈C2,G2〉;
15: return 𝜙1, 𝜙2;
16: end function

– G−1 = {𝑝1, 𝑝2, 𝑝3} and G+2 = {𝑝2}.

Namely, we obtain G+1 = G
−

2 (as in the rational case), but
G
−

1 ≠ G
+

2 .
In most cases, the sets G+1 and G−2 (resp., G−1 andG+2 ) have

many generators in common, meaning that in Pseudocode 5
most pairs of generators are processed twice. The helper
function Z-combine called on line 4 of Pseudocode 12
implements an ad hoc version of the function combining
adjacent generators (i.e., function combine-adj of Pseu-
docode 2), whose goal is to compute both G★1 and G★2 at the
same time in an attempt to avoid redundant computations as
much as possible. To this end, Pseudocode 8 uses a single
pair of nested loops so as to check each 𝑔+ ∈ G+1 ∪ G

−

2 with
respect to each 𝑔− ∈ G−1 ∪ G

+

2 : in particular, the adjacency
test on line 6 is computed only once for each pair (𝑔+, 𝑔−);
if the test succeeds, then any required linear combination is
computed and sets G∗1 and G∗2 are updated accordingly.

When exiting from the call to Z-combine, in lines 5–14
of Pseudocode 7, the auxiliary integral split function con-
cludes its work by composing the Double Description repre-
sentations of its results 𝜙1 and 𝜙2.5

2.4 Integral split on a linear equality

We now consider the case of an integral split based on a linear
(dis-) equality constraint. This case turns out to be trickier,
since the domain of convex polyhedra, like most numeri-
cal domains based on convex approximations, is generally
unable to precisely filter on a disequality constraint.

5 The reason for adding the if-then-else on lines 6–10 is that the same
auxiliary function is used in the next section to compute integral splits
under equality constraints.

Pseudocode 8 (Integral combination of generators)
1: function Z-combine(G+1 , G−1 , P1, G+2 , G−2 , P2, S)
2: G

∗

1 ←∅;
3: G

∗

2 ←∅;
4: for all 𝑔+ ∈ G+1 ∪ G

−

2 do
5: for all 𝑔− ∈ G−1 ∪ G

+

2 do
6: if adjacent(𝑔+, 𝑔− ,S) then
7: if 𝑔+ ∈ G+1 and 𝑔− ∈ G−1 then
8: let 𝑝+1 = P1 [𝑔

+
] and 𝑝−1 = P1 [𝑔

−
];

9: 𝑔★1 ← combine(𝑔+, 𝑔− , 𝑝+1 , 𝑝
−

1 );
10: G

★
1 ←G

★
1 ∪ {𝑔

★
1 };

11: end if
12: if 𝑔+ ∈ G−2 and 𝑔− ∈ G+2 then
13: let 𝑝+2 = P2 [𝑔

+
] and 𝑝−2 = P2 [𝑔

−
];

14: 𝑔★2 ← combine(𝑔+, 𝑔− , 𝑝+2 , 𝑝
−

2 );
15: G

★
2 ←G

★
2 ∪ {𝑔

★
2 };

16: end if
17: end if
18: end for
19: end for
20: return G★1 , G★2 ;
21: end function

Example 3
For polyhedron 𝑃 of Example 2, consider a branch guarded
by constraint 𝑐 ≡ (𝑥0 = 2). We can be precise on the equality
branch, computing

𝑃then = filter (𝑃, 𝑥0 = 2)

= con({𝑥0 = 2,0 ≤ 𝑥1 ≤ 3}).

On the other branch, we may try to lower the disequality
𝑐≠ ≡ (𝑥0 ≠ 2) into the pair of inequalities

(𝑐<, 𝑐>) = Z_complement_eq(𝑐)

≡ ((𝑥0 ≤ 1), (𝑥0 ≥ 3));

hence, we would intuitively compute

𝑃<else = filter (𝑃, 𝑐<)

= filter (𝑃, 𝑥0 ≤ 1)

= con({0 ≤ 𝑥0 ≤ 1,0 ≤ 𝑥1 ≤ 3}),

𝑃>else = filter (𝑃, 𝑐>)

= filter (𝑃, 𝑥0 ≥ 3)

= con({𝑥0 = 3,0 ≤ 𝑥1 ≤ 3}),

as shown in Fig. 5. Unfortunately, this effort towards preci-
sion is later made useless by the join computation 𝑃else =
𝑃<else � 𝑃

>
else = 𝑃, whose result is the same as the input

polyhedron (so that 𝑃then ⊆ 𝑃else).
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Fig. 5 Integral split on 𝑐 ≡ (𝑥0 = 2)

Fig. 6 Integral split on 𝑐 ≡ (𝑥0 = 3)

Some attempts can be made to identify those lucky cases
where a disequality can be successfully refined into an in-
equality constraint, as in the following example.

Example 4
When splitting polyhedron 𝑃 of Example 2 on constraint
𝑐 ≡ (𝑥0 = 3), we obtain

(𝑐<, 𝑐>) = Z_complement_eq(𝑐)

≡ ((𝑥0 ≤ 2), (𝑥0 ≥ 4))

so that

𝑃then = filter (𝑃, 𝑥0 = 3)

= con({𝑥0 = 3,0 ≤ 𝑥1 ≤ 3}),

𝑃<else = filter (𝑃, 𝑐<)

= filter (𝑃, 𝑥0 ≤ 2)

= con({0 ≤ 𝑥0 ≤ 2,0 ≤ 𝑥1 ≤ 3}),

𝑃>else = filter (𝑃, 𝑐>)

= filter (𝑃, 𝑥0 ≥ 4) =⊥.

Hence, as shown in Fig. 6, we obtain the precise result

𝑃else = 𝑃
<
else � 𝑃

>
else = 𝑃

<
else �⊥ = 𝑃

<
else.

Pseudocode 9 (Filter-based integral split on equality)
1: function filter-based-Z-split-on-equality(𝜙, 𝛽)
2: 𝜙1← filter (𝜙, 𝛽);
3: (𝛽<, 𝛽>) ← Z_complement_eq(𝛽);
4: 𝜙<← filter (𝜙, 𝛽<);
5: 𝜙>← filter (𝜙, 𝛽>);
6: if 𝜙< =⊥ then
7: 𝜙2← 𝜙>; ⊲ lucky case
8: else if 𝜙> =⊥ then
9: 𝜙2← 𝜙<; ⊲ lucky case

10: else
11: 𝜙2← 𝜙; ⊲ unlucky case
12: end if
13: return 𝜙1, 𝜙2;
14: end function

In Pseudocode 9 we sketch a possible user-level imple-
mentation of the integral split for an equality constraint 𝛽
that tries to identify the lucky case described in Example 4,
based on a repeated use of the filter operator.

It should be noted that, in some implementations of the
abstract domain of convex polyhedra, it is possible to check
whether a polyhedron 𝜙 is disjoint from (the polyhedron im-
plicitly defined by) a linear constraint 𝛽 using a more efficient
helper predicate, rather than invoking the filter operator. As
an example, predicate relation_with(𝜙, 𝛽), available in both
the Parma Polyhedra Library [6] and PPLite [10], can estab-
lish the relation (disjointness, inclusion, proper intersection)
of a polyhedron with a linear constraint 𝛽 by examining
the sign of the scalar products of the generators of 𝜙 with
𝛽. However, such a helper predicate and the corresponding
optimizations are not generally available (e.g., they are not
part of the generic abstract domain interface provided by the
Apron library [25]).

As a consequence, the actual user-level implementation
of this variant of the split operator may vary depending on
the considered static analysis tool, in an attempt to obtain a
generic implementation characterized by a reasonable preci-
sion/efficiency tradeoff. For instance, in order to check if 𝜙
is disjoint from an inequality constraint 𝛽, the static analysis
tool Crab first rewrites the constraint as 𝛽 ≡ (𝑥𝑖 ⊲⊳ expr) and
then uses another helper function to evaluate and compare
the ranges of values that variable 𝑥𝑖 and expression expr can
assume in polyhedron 𝜙; this check is repeated for each vari-
able 𝑥𝑖 occurring in constraint 𝛽 (implicitly exploiting the
fact that in the Crab Intermediate Representation, which re-
sembles 3-address code, all branching predicates are defined
on two variables at most). What can be generally observed
is that, in the lack of an ad hoc operator for the integral
split, the analysis tool may be forced to perform several calls
to lower-level abstract operators (entailment checks, evalua-
tions of the value range of a linear expression, etc.), with a
corresponding multiplication of the overheads that are inher-
ently incurred when interfacing the static analysis tool with a
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Pseudocode 10 (Integral split on equality)
1: function Z-split-on-equality(𝜙, 𝛽)
2: if is_integral_inconsistent(𝛽) then
3: return ⊥, 𝜙; ⊲ 𝜙 disjoint from 𝛽
4: end if
5: let 𝜙 ≡ 〈C,G〉 and S = sat_cons(C,G);
6: P ← scalar_products(G, 𝛽);
7: if is- included-in-equality(G, P) then
8: return 𝜙, ⊥; ⊲ 𝜙 satisfies 𝛽
9: end if

10: if is-disjoint-from-equality(G, P) then
11: return ⊥, 𝜙; ⊲ 𝜙 disjoint from 𝛽
12: end if
13: (𝛽<, 𝛽>) ← Z_complement_eq(𝛽);
14: P

<
← adjust_products(P,G, 𝛽, 𝛽<);

15: P
>
← adjust_products(P,G, 𝛽<, 𝛽>);

16: if is-disjoint-from-inequality(G, P<) then
17: ⊲ 𝜙 disjoint from 𝛽<

18: return Z-split-aux(C, G, S, 𝛽, P, 𝛽> , P>);
19: end if
20: if is-disjoint-from-inequality(G, P>) then
21: ⊲ 𝜙 disjoint from 𝛽>

22: return Z-split-aux(C, G, S, 𝛽, P, 𝛽< , P<);
23: end if
24: 𝜙2← 𝜙; ⊲ unlucky case: deep copy
25: 𝜙1← filter(𝜙, 𝛽);
26: return 𝜙1, 𝜙2;
27: end function

Pseudocode 11 (Helper predicates)
1: function is- included-in-equality(G, P)
2: (G

+,G0,G−) ← partition(G,P);
3: return G = G0;
4: end function

5: function is-disjoint-from-equality(G, P)
6: (G

+,G0,G−) ← partition(G,P);
7: let 〈𝐿, 𝑅, 𝑃〉 = G;
8: return (𝐿 ⊆ G0 and 𝑅 ⊆ G0

∪ G
− and 𝑃 ⊆ G−)

9: or (𝐿 ⊆ G0 and 𝑅 ⊆ G0
∪ G

+ and 𝑃 ⊆ G+);
10: end function

11: function is-disjoint-from-inequality(G, P)
12: (G

+,G0,G−) ← partition(G,P);
13: let 〈𝐿, 𝑅, 𝑃〉 = G;
14: return 𝐿 ⊆ G0 and 𝑅 ⊆ G0

∪ G
− and 𝑃 ⊆ G− ;

15: end function

generic abstract domain component; hence, the more precise
and expensive domains are likely to witness a degradation in
their overall efficiency.

The integral split of a polyhedron 𝜙 ∈ CP𝑛 on an equality
constraint 𝛽 is specified in Pseudocode 10. In lines 2-4, the

Pseudocode 12 (Integral split)
1: function Z-split(𝜙, 𝛽)
2: if is_equality(𝛽) then
3: return Z-split-on-equality(𝜙, 𝛽);
4: else
5: return Z-split-on-inequality(𝜙, 𝛽);
6: end if
7: end function

procedure starts by filtering out the trivial case of an equality
constraint that, while being satisfiable on rationals, has no
integral solution at all; as an example, consider the equality
𝛽 ≡ (2𝑥0 + 2𝑥1 = 5). After obtaining the scalar products P
using the equality constraint 𝛽 (line 6), the procedure checks
for other special cases in lines 7-12: namely, when the input
polyhedron 𝜙 is included in the hyperplane defined by 𝛽, the
‘else’ branch 𝜙2 is known to be empty; similarly, when the
input polyhedron 𝜙 is disjoint from the hyperplane defined
by 𝛽, the ‘then’ branch 𝜙1 is known to be empty; the helper
predicates efficiently checking these conditions, based on the
sign of the already computed scalar products, are shown in
Pseudocode 11. The procedure then tries to identify lucky
cases such as the one described in Example 4: to this end, in
lines 13–15 it computes the constraints 𝛽< and 𝛽> and the
corresponding scalar products P< and P> (which are effi-
ciently obtained from P, as discussed before). This attempt
succeeds when 𝜙 is disjoint from 𝛽< (resp., 𝛽>): if this hap-
pens, then 𝜙<2 =⊥ and 𝜙2 = 𝜙>2 (resp., 𝜙>2 =⊥ and 𝜙2 = 𝜙<2 ),
so that the procedure can conclude its work by calling the
helper function Z-split-aux of Pseudocode 7 in line 18
(resp., line 22). Lines 24–26 are meant to handle the unlucky
case when, as in Example 3, both 𝜙<2 and 𝜙>2 are not empty;
hence, 𝜙2 is obtained by just copying the input polyhedron 𝜙,
while 𝜙1 is obtained by calling (only once) the filter operator.

Having defined both the linear inequality and equality
variants of the integral split operator, we can easily combine
them, as shown in Pseudocode 12, to obtain a user-friendly
operator Z-split.

3 Enabling splits in a static analysis

For our experiments we have chosen Clam/Crab, which is
the Abstract Interpretation engine included in the SeaHorn
framework [22]. The Clam component uses Clang/LLVM to
obtain the LLVM bitcode of the program under analysis and
then generates the corresponding CrabIR representation [21];
this is processed by the Crab component, which computes the
abstract semantics according to the chosen analysis configu-
ration. The latter includes, among many other parameters, the
choice of the abstract domain: Crab supports many (combi-
nations of) abstract domains and includes interfaces towards

Springer



V. Arceri et al.

the abstract domains provided by libraries Apron [25] and
ELINA [33].

Our prototype analyzer was obtained by modifying the
dev14 branch of Clam/Crab,6 which is based on LLVM 14.
The addition of a new abstract operator requires that suitable
changes are applied to both the abstract domain and the
fixpoint engine components of the considered static analysis
tool.

3.1 Changes in the abstract domain component

The new split operators for the domain of convex polyhedra
have been implemented in the PPLite library [7, 8, 10]. As
previously said, the rational split operator, implementing the
algorithm Q-split of Pseudocode 4, was proposed and ex-
perimentally evaluated in [9]; it is available since version 0.4
of the library, for both abstract domains P𝑛 and CP𝑛. A vari-
ant of the integral split operator for the domain CP𝑛, imple-
menting the algorithm Z-split-on-inequality of Pseu-
docode 6 but without the optimizations provided by function
Z-combine of Pseudocode 8, has been available since ver-
sion 0.10.1 of the library;7 the fully optimized version of the
integral split operator will be available starting from release
0.12 of the PPLite library.

The new split operators have been integrated in the Apron
interface wrapper for PPLite; clearly, since the generic Apron
interface is missing suitable entry points for these new
abstract domain operators, they have been added as non-
generic, ad hoc functions. The use of the Apron wrapper
was essential to simplify the integration of the PPLite do-
mains in Clam/Crab; we also extended the generic abstract
domain interface in Crab by adding a new method for the
integral split operator: this invokes the new abstract opera-
tor when the interface is instantiated with a PPLite domain,
while resorting to the unoptimized implementation (based on
function filter-based-Z-split of Pseudocode 5) when
it is instantiated with alternative abstract domains.

3.2 Changes in the fixpoint approximation
engine

The adaptation of the fixpoint engine required more work
than expected. This is mainly due to a CrabIR language
design choice (inherited from IKOS AR form [12]) whereby
all conditional branches are expressed in a declarative way,
combining a non-deterministic branch with the addition, in
each target of the branch, of assume abstract statements
encoding the branch condition. As an example, the CrabIR
CFG representation for the following simple function

6 https://github.com/seahorn/clam/tree/dev14.
7 The experimental evaluation in [3] was based on this variant of the

algorithm.

Fig. 7 Original CrabIR CFG, using assume statements

Fig. 8 Modified CrabIR CFG, using split statement

void foo() {
int i = 0;
while(i < 50)

i = bar(i);
}

is shown in Fig. 7; roughly speaking, the non-optimized
implementation of the conditional branch is hard coded in
the CrabIR representation, preventing the application of the
split operator.

As a workaround, we enriched CrabIR by adding a new
abstract statement, called split, and then modified Clam to
generate this new statement whenever translating a numerical
conditional branch (see the CFG in Fig. 8). Branches based on
Boolean and pointer tests are not affected and hence maintain
the declarative encoding.

The other main change to the fixpoint computation engine
regards the choice of where to store the invariants computed
during the analysis. Exploiting the declarative encoding of
conditional branches, by default Crab annotates each node in
the CFG with the pairs 〈pre,post〉 of invariants that are valid
at the start (pre) and at the end (post) of the node. However,
when the CFG is modified by introducing split statements,
this approach is no longer adequate, because we would need
to store two different invariants (postthen and postelse) at the
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exit of those nodes ending with a split statement. There-
fore, we modified the engine so as to store an invariant along
each edge of the CFG, as well as storing an invariant on those
nodes where a widening/narrowing is computed. At the end
of the analysis, in a finalization phase, the edge invariants
are used to compute the 〈pre,post〉 pairs of each CFG node,
which requires computing many joins; while this simplistic
approach incurs avoidable inefficiencies, it preserves the ex-
pectations of the other Clam/Crab components that have not
been modified.

It is worth noting that our prototype is considering a subset
of all the numerical branches that, in principle, could bene-
fit from the split operator. For instance, Clam/Crab provides
limited support for floating-point datatypes and safely ig-
nores conditional branches whose predicates are defined on
floating-point variables, yielding a pure non-deterministic
branch; as a consequence, our prototype cannot trigger the
invocation of the rational variant of the split operator.

Similarly, Clam/Crab safely ignores integral splits when
the corresponding predicates are linear inequalities defined
on unsigned variables. The reason is that, even though the
LLVM bitcode representation of integer values does not en-
code their signedness, in the Crab IR representation these
are always interpreted as signed integer values (so that the
biggest unsigned values are mapped to negative signed val-
ues). Hence, when faced with an unsigned comparison, the
Crab IR representation would need to reinterpret the (signed)
arguments: the default approach avoids the corresponding
cost by safely ignoring the branch comparison. Note that
it is possible to instruct Clam/Crab to modify its IR rep-
resentation so as to correctly encode an unsigned integer
linear predicate into a Boolean combination of signed inte-
ger linear predicates; however, this program transformation
step is implemented by first introducing new Boolean vari-
ables, which store the result of the signed comparisons, and
then branching (via the declarative filter approach) on those
Boolean variables, thereby escaping from our optimizations
that only target numerical branches. As a consequence, we
conjecture that, in our experimental evaluation, the efficiency
improvements obtainable thanks to the split operator are un-
derestimated.

Note that the prototype static analysis tool described in [3]
was also disregarding those implicit numerical branches that
in CrabIR are encoded using the select statement, which
implements a conditional assignment. As an example, the
conditional assignment8

x = ite(y <= 0, 1, 2);

implicitly encodes the control flow

8 In Crab, the select statement is pretty printed using the ternary
ite operator.

if (y <= 0)
x = 1;

else
x = 2;

Our new implementation applies the split operator also when
abstractly evaluating these select statements, provided the
corresponding linear predicate is defined on signed integral
variables.

4 Experimental evaluation

In our experimental evaluation, we analyzed programs com-
ing from two different sources. First, we considered 39 C
source files, distributed with PAGAI [24], which are vari-
ants of benchmarks taken from the SNU real-time bench-
mark suite for WCET (worst-case execution time) analysis;
note that, while considering all of them, in the following
we only show the results for the five tests whose analysis
time is greater than a second. Then, we enriched our bench-
mark suite by also considering 25 Linux drivers from the
SVCOMP repository;9 we applied no specific selection cri-
terion and randomly picked drivers having an analysis time
greater than a second and less than five minutes.

In our experiments, we tried to apply minimal changes
to the default configuration of the analyzer: in particular,
we instructed LLVM to systematically inline function calls,
so as to improve the call context sensitivity of the analysis.
Note that, by default, Clam/Crab instructs LLVM to lower
all switch statements, which are thus translated to chains
of conditional branches and hence can benefit of the split
optimization.

Time efficiency comparison Table 1 reports the timing
results obtained in our experimental evaluation: the 5 PA-
GAI tests are shown in the top half of the table, the Linux
drivers in the lower half. The 2nd column in Table 1 shows
the baseline for the efficiency evaluation, i.e., the overall
analysis time in seconds when using F_Poly, the Cartesian
factored [23] convex polyhedra domain of PPLite; note that
we include time spent in pre-analysis phases (e.g., parsing,
LLVM bitcode generation and Clam preprocessing steps),
while excluding post-analysis phases (e.g., assertion checks
based on the results of the analysis).10 In the 3rd column,
we show the time obtained when using the Cartesian fac-
tored convex polyhedra domain of ELINA [33]: this is done
to highlight that our starting point for the efficiency com-
parison is in line with what is considered the most efficient

9 https://github.com/sosy-lab/sv-benchmarks/tree/master/c/ldv-
linux-4.2-rc1.
10 Experiments have been performed on a MacBook Pro with Apple
M1 Pro CPU, 16 GB of RAM and running macOS Ventura (13.5.2).
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Table 1 Overall static analysis
time (in seconds) without/with
splits

(Abridged) test name Without splits PPLite with split Time ratio
PPLite ELINA No opt Opt

adpcm 42.8 (★) 0.7 41.2 42.0 1.02
prog9000 15.9 118.0 19.5 22.1 0.72
nsichneu 13.2 17.7 12.4 8.5 1.56
decompress 2.2 2.1 2.2 0.8 2.69
filter 1.1 0.9 1.2 1.1 1.00

mmc-host 219.4 167.9 179.7 67.5 3.25
rbd 175.9 71.0 123.2 78.5 2.24
9xxx 170.0 149.3 152.6 22.0 7.72
wl12xx 162.3 211.0 188.0 41.0 3.96
mdc 78.2 (★) 64.5 96.5 7.6 10.30
firewire 48.0 (★) 44.5 52.0 4.8 10.00
w83781d 47.5 37.1 64.2 61.2 0.78
snic 30.3 29.1 29.1 10.0 3.01
hwmon-abituguru3 29.8 37.3 29.8 17.5 1.70
btcoexist 26.5 21.1 23.6 11.5 2.30
hdpvr 24.6 21.7 25.9 4.2 5.79
udlfb 23.2 21.4 21.0 15.3 1.52
lnet-selftest 11.8 (★) 12.3 11.1 7.0 1.69
media-usb-tm6000 10.1 9.1 13.2 3.6 2.80
libcomposite 8.6 8.0 8.7 3.6 2.39
pcmcia_rsrc 5.7 7.6 5.0 8.3 0.68
r8152 5.7 5.6 6.1 3.6 1.55
power-bq2415x 5.1 4.8 6.8 5.4 0.94
media-pci-ttpci 5.0 5.1 5.0 2.7 1.84
uas 4.9 5.0 4.8 1.0 4.82
prism54 3.7 4.8 3.5 2.7 1.39
hid-usb 3.2 4.2 3.3 2.1 1.53
cx25840 2.7 2.9 2.6 2.2 1.22
vfio-pci 2.0 (★) 2.0 2.2 1.5 1.34
cpia2 1.5 1.7 1.5 1.1 1.28

library for convex polyhedra. Note, however, that ELINA
cannot be used as a proper baseline, as it is known that by
using machine integers (rather than the arbitrary precision
integers adopted by PPLite), it sometimes raises overflow
exceptions, after which it returns an over-approximation of
the actual result. When this happens, both the efficiency and
the precision of the analysis are deeply affected; these cases
are highlighted in the table using the symbol (★).

The 4th and 5th columns of the table report the overall
analysis time obtained when applying the CFG transforma-
tion that inserts the new split statements in the CrabIR
representation; as discussed before, this implies that the pro-
gram invariants are stored on the CFG edges and the analyzer
has to invoke the invariant finalization phase. The 4th col-
umn, labeled ‘no opt’, shows the time obtained when still
using the classical, filter-based implementation of the split

statement; the 5th column, labeled ‘opt’, shows the time ob-
tained when actually enabling the newly implemented split
operator. Finally, the last column shows the speedup obtained
by the optimized split implementation (5th column) with re-
spect to the baseline (2nd column).

On the considered tests, we are able to obtain significant
speedups, sometimes beyond our own expectations; in a few
cases, we also obtain minor slowdowns. Overall, the geo-
metric mean of the speedups is 1.25 for the PAGAI tests and
2.27 for the Linux drivers.

By comparing the values of the 4th and 5th columns of Ta-
ble 1, we can confirm that the speedups obtained are mainly
caused by the use of the optimized split operator; namely,
when only modifying the CFG to introduce the split state-
ment and storing program invariants at the CFG edges, we
do somehow affect the efficiency of the analysis, but we
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Table 2 Number of nodes,
splits, selects and maximum
RSS (in KB)

(Abridged) test name Without splits Split Select With splits Mem ratio
Nodes Mem Nodes Mem

adpcm 146 141,120 34 32 93 125,712 1.12
prog9000 1491 1,721,472 275 12 947 1,410,304 1.22
nsichneu 2004 1,657,584 625 0 754 621,952 2.67
decompress 1032 175,792 266 4 638 43,232 4.07
filter 1121 244,368 187 372 809 230,480 1.06

mmc-host 26,254 8,835,840 3772 119 19,701 1,158,688 7.63
rbd 62,327 7,004,544 6437 231 50,735 2,476,112 2.83
9xxx 13,127 70,552.16 2301 5 8900 397,072 0.18
wl12xx 18,267 8,076,960 3781 20 13,307 1,096,768 7.36
mdc 16,089 7,084,048 2402 30 11,837 320,512 22.10
firewire 9925 243,680 2038 77 6842 153,712 1.59
w83781d 41,614 1,554,992 5367 1328 31,092 1,150,192 1.35
snic 20,055 3,087,776 2258 132 15,710 531,168 5.81
hwmon-abituguru3 2653 297,312 521 10 2088 119,072 2.50
btcoexist 41,104 4,456,576 8959 0 23,544 924,656 4.82
hdpvr 10,551 3,624,400 1714 20 8022 159,616 22.71
udlfb 9129 603,312 1806 43 5743 234,656 2.57
lnet-selftest 11,391 6,638,096 1588 70 8442 277,184 23.95
media-usb-tm6000 15,447 3,751,312 1453 21 12,886 203,168 18.46
libcomposite 6798 546,288 876 48 5360 225,344 2.42
pcmcia_rsrc 3055 249,104 381 60 2375 138,528 1.80
r8152 24,969 592,400 3907 6 17,789 247,088 2.40
power-bq2415x 23,763 384,864 1985 1746 20,518 254,832 1.51
media-pci-ttpci 9057 125,360 2003 16 5610 97,440 1.29
uas 2792 572,384 514 7 1919 48,800 11.73
prism54 6430 38,080 1065 29 4541 37,984 1.00
hid-usb 7303 177,856 1478 45 4704 99,120 1.79
cx25840 11,977 287,712 2736 21 6556 234,560 1.23
vfio-pci 3024 125,360 564 16 2224 97,440 1.29
cpia2 7178 111,424 1335 23 4803 73,840 1.51

typically obtain minor speedups or even slowdowns. As an
example, for the test nsichneu, by just storing the program
invariants at the CFG edges, the baseline analysis time (13.2
seconds) is reduced by 0.8 seconds; when enabling the op-
timized split operator, we obtain a more significant decrease
of 4.7 seconds.

A deeper investigation has shown that the few slowdowns
are mainly caused by the unoptimized program invariant
finalization phase described in the previous section. For in-
stance, this finalization phase is responsible of 25%–30% of
the overall analysis time for the tests prog9000, w83781d
and power-bq2415x, thereby hiding any efficiency improve-
ment coming from the split operator. As explained in the pre-
vious section, we believe that this finalization phase could
be improved, but this would require some changes in the
post-analysis phases of the Clam/Crab tool.

Memory efficiency comparison A remarkable side ef-
fect of the CFG transformation that inserts the numerical
split statements is a significant reduction in peak memory
usage. As intuitively suggested by the CFGs in Figs. 7 and 8,
the introduction of the split statements causes a decrease
in the number of nodes of the CFG, with a consequential
reduction of the number of program invariants that need to
be stored during the analysis.

This is highlighted by the data shown in Table 2; the 2nd
and 6th columns of the table show the number of nodes in the
CrabIR CFGs generated without and with the CFG transfor-
mation (note that, in both cases, we refer to the CFGs after
the LLVM inlining phase); the 4th and 5th columns report
the number of split and select statements occurring in
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each test, respectively;11 in the 3rd and 7th columns, we pro-
vide an estimation of the peak memory usage by reporting
the maximum RSS (Resident Set Size) for the two aforemen-
tioned configurations (in KB); the last column of the table
shows the ratio of the two memory measurements. Overall,
the geometric mean of the memory reduction ratio is 1.73
for the PAGAI tests and 3.13 for the Linux drivers.

A recent paper [26] proposes a technique to reduce the
memory footprint of the static analysis tool IKOS, which
shares with Crab the main design of the fixpoint approxima-
tion engine. Since the technique adopted in [26] is completely
independent from the split optimization, we conjecture that
the two optimizations can be applied together, combining
their improvements.

Precision comparison When defining the split operator,
our main goal was to obtain an efficiency improvement: in
principle, no effect should be observed on the precision of
the analysis. As a matter of fact, the split operator as im-
plemented in [3] was obtaining the same precision of the
filter-based approach on all considered tests, as confirmed
by systematically comparing all the computed program in-
variants using the clam-diff helper tool.

However, the improved integral split operator for equality
constraints, as described in Sect. 2.4, can sometimes obtain
a minor precision improvement with respect to the filter-
based approach implemented in Clam/Crab. As discussed in
Sect. 2, these changes in precision are due to small differ-
ences in the handling of variable integrality: in principle, the
accuracy of the integral split operator could range from the
less precise rational split, yielding no integral refinement at
all, to the very precise and very expensive case of an imple-
mentation computing the best possible integral refinement.
As a consequence, in the current experimental evaluation,
we observed several cases (15 out of 25 Linux driver tests)
where the program invariants computed when using the split
operator were slightly more precise than those of the baseline
analysis.

Note that occasionally a minor perturbation in the preci-
sion of the analysis can significantly affect its efficiency: this
explains the biggest slowdown (0.68) reported in Table 1, for
the Linux driver pcmcia_rsrc. When analyzing this test, the
precision improvements obtained by the split operator trigger
the computation of a longer increasing chain in the fixpoint
approximation engine: the widening operator is called 796
times (it is called only 337 times in the unoptimized case),
leading to the efficiency loss.

11 The number of select statements is the same with or without
the CFG transformation introducing splits; we report their number to
highlight that the explicit control flow splits are usually much more
frequent than the implicit ones encoded by select statements.

5 Conclusions

This paper proposes a new abstract domain operator that is
able to speed up the static analysis when splitting the control
flow path on a predicate and its complement. Our prototype,
built modifying Clam/Crab, is able to obtain important mem-
ory and time improvements on several tests, including both
synthetic benchmarks and real-world programs.

Future work can investigate several directions. First of
all, the current prototype can be extended to enable the op-
timization on more kinds of numerical split statements.
As an example, one could modify the rewriting approach
currently adopted by Clam/Crab for the unsigned integral
comparisons, so as to avoid introducing Boolean variables
and directly branch on the signed integral comparisons.

Second, we plan to evaluate the applicability of the ap-
proach to other abstract domains, taking into account that
its effectiveness strongly depends on profitability considera-
tions.

In [3], we suggested the addition of a split operator for
numerical abstract domains based on the LDDs [20] and
RDDs [18] (Linear and Range Decision Diagrams) data
structures, such as the Boxes domain. A Linear Decision
Diagram is a BDD-like data structure where non-terminal
nodes are labeled by constraints on numerical variables; suit-
able semantic functions allow for the implementation of all
the abstract domain operators, including the filter operator.
Hence, we made an attempt to extend the Boxes domain
by defining a corresponding split operator;12 unfortunately,
in our tests we were unable to obtain significant efficiency
improvements with respect to the baseline implementation.

We still believe that some of the abstract domains di-
rectly supporting the representation of disjunctive informa-
tion could benefit from an optimized split operator. Things
seem promising when considering the finite powerset of
convex polyhedra [5]. Note that when using a disjunctive
domain, it is clearly possible to workaround the limitations
of convex over-approximations and thus improve the preci-
sion of splits. For instance, in Fig. 9 we consider the split
of the powerset 𝑆 = {𝑃, 𝑃′} on the equality constraint 𝑐,
where 𝑃 and 𝑐 are those described in Example 3. By avoid-
ing the convex polyhedral hull approximation, we can obtain
𝑆then = {𝑃then} and 𝑆else = {𝑃<else, 𝑃>else, 𝑃′}; note that 𝑃′,
which is not directly affected by the split operator, can be
simply “moved” into 𝑆else, avoiding useless and costly copy
operations. The PPLite library already includes an imple-
mentation of the split operator for the finite powerset domain
of convex polyhedra; since this domain is very precise but
also rather expensive, it will probably benefit from the cor-
responding efficiency improvements. Note that, if necessary,

12 The authors would like to thank Matteo Boroni Grazioli for his help
in the implementation and evaluation of this operator.
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Fig. 9 Example of split on a powerset domain

one could further limit the computational cost of the powerset
domain by adopting the decoupled approach of [2].

Another possibility is to investigate the profitability of im-
plementing split operators for DFA-based abstract domains
for string analysis [1, 30]; for instance, we could optimize the
abstract evaluation of branches based on predicates such as
str.startsWith(“prefix”), whose default implementa-
tions on the domain of DFAs are often expensive.

Finally, it would be interesting to extend our experimental
evaluation to different static analysis tools; while we conjec-
ture that similar results can be obtained for other tools analyz-
ing the low-level program representation (e.g., IKOS [12] and
PAGAI [24]), it is more difficult to predict the effectiveness
of the optimization for those tools targeting the AST-based
high-level representations (e.g., MOPSA [28]).
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