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Abstract. In modern programming languages, more and more func-
tionalities, such as reflection and data interchange, rely on string values.
String analysis statically computes the set of string values that are pos-
sibly assigned to a variable, and it involves a certain degree of approxi-
mation. During the last decade, several abstract domains approximating
string values have been introduced and applied to statically analyze pro-
grams. However, most of them are not precise enough to track relational
information between string variables whose value is statically unknown
(e.g., user input), causing the loss of relevant knowledge about their
possible values. This paper introduces a generic approach to formalize
relational string abstract domains based on ordering relationships. We
instantiate it to several domains built upon different well-known string
orders (e.g., substring). We implemented the domain based on the sub-
string ordering into a prototype static analyzer for Go, and we exper-
imentally evaluated its precision and performance on some real-world
case studies.

Keywords: Relational abstract domains · Static analysis · String anal-
ysis · Abstract interpretation.

1 Introduction

String values play a fundamental role in most programming languages. Dynam-
ically inspecting and modifying objects, transforming text into executable code
at run-time, and handling data interchange formats (e.g., XML, JSON) are only
a few examples of scenarios where strings are heavily used.

The static analysis community has spent a great effort in proposing new
abstractions to better approximate and analyze string values. Unfortunately,
almost all the existing string abstract domains are in a position to track in-
formation of single variables used in a program (e.g., if a string contains some
characters, or if it starts with a given sequence), without inspecting their rela-
tionship with other values (e.g., if a string is a substring of another one, despite
their actual values are unknown). Detecting relational information between vari-
ables is critical in vulnerability analysis, e.g., malware detection, or to verify if
the string values manipulated by a program comply with specified consistency
constraints.
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func secName(name , pr1 , pr2 string) {
if hasPrefix(name , pr1) {

return pr2 + name [4:]
} else if hasPrefix(name , pr2) {

return pr1 + name [4:]
} else {

return name
}

}

Fig. 1: secName function.

For numerical values, advanced and sophisticated relational abstractions have
been studied and improved over the years to track relations between variables.
A representative example is the Polyhedra abstract domain [19], which has been
continuously and heavily improved over the years, as reported by the more recent
important works on its optimization, e.g., [9].

For string values not much attention has been given to a systematic design
of relational domains. We illustrate the problem by considering the function
secName3 in Fig. 1. The function takes as input three arguments of type string,
name, pr1 and pr2. Then, if name has pr1 as a prefix, the function returns pr2

concatenated to the substring of name starting at index 4. Function secName

behaves analogously when name starts with pr2, concatenating pr1 to name[4:].
Otherwise, name is returned. The relational information we aim to capture here is
the one relating pr1 and pr2 with name and the returned value. In particular, we
want to infer that name[4:] is always contained in the returned value, and pr1

(resp. pr2) is contained in the returned value if name starts with pr2 (resp. pr1).
Using non-relational abstract domains, there is no way to catch these relations.
It is clear that using relational domains considerably improves the accuracy of
any static analyzer, and the issue of providing a systematic construction of them
deserves to be deeply investigated.

1.1 Paper Contribution

In this paper, we define a constructive method upon which relational strings
abstract domains can be defined. We start from a string order of interest, and we
introduce a suite of relational abstract domains fitting the proposed framework,
based on length inequality, character inclusion, substring relations. Precisely, we
first formalize how to track relations between single string variables; then, we
extend the method to infer relations between string expressions and variables to
improve the analysis’s precision.

Abstract domains tracking relations among variables may lose information
about the values (i.e., the content) of each variable and the only relational in-
formation may not be enough to precisely answer about programs of interest.
Nevertheless, one standard way to cope with this problem (exploited also in the
numerical world) is to combine the relational and non-relational abstractions

3 secName is the result of a slight modification made to the function available at
https://www.codota.com/code/java/classes/java.lang.String
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by using Cartesian or reduced products [15]. One of these combinations is the
Pentagons abstract domain [29], which combines intervals (non-relational infor-
mation) with the strict upper bounds abstract domain (relational information)
by means of the reduced product. Also in this paper, we rely on abstract domain
combinations. In particular, we propose two combinations with our substring
relational abstract domain, discussing the benefits of them: one with the con-
stant propagation analysis and one with Tarsis [32], a non-relational finite-state
automata-based string domain.

The design of relational string abstract domains is agnostic w.r.t. the ana-
lyzed programming language. Therefore, our formalization targets a core imper-
ative language, while the examples and experimentation are based on real-word
programming languages, namely Go (https://golang.org/), a multi-paradigm
language heavily used for developing smart contracts for blockchains.

We implemented our framework4 and instantiated it with the substring re-
lation using a prototype static analyzer for Go. The experimental results show
that the accuracy of our system outperforms state-of-the-art string analyses, as
well as the scalability of our proposal.

1.2 Paper Structure

Sect. 2 discusses related work. Sect. 3 recalls some background definitions. Sect. 4
shows a core language for string-manipulating programs. Sect. 5 formalizes the
construction of generic relational string abstract domains based on a given tex-
tual order (Sect. 5.1), and a suite of instantiations capturing different relational
properties (Sect. 5.2-5.4). In particular, Sect. 5.4 will present the substring rela-
tional domain Sub?, which tracks the set of expressions that are definitely sub-
strings of each program variable. Sect. 6 presents the results of our experimental
evaluation on Sub?. Sect. 7 concludes.

2 Related Work

For numerical values, several relational abstract domains have been proposed,
such as Polyhedra [19], Octagons [31], Pentagons [29], and Stripes [20]. Over-
all, this work line inspired our approach and, in particular, the string relational
domains that we will define in Sect. 5. Indeed, consider the Octagons and the
Pentagons abstract domains. Octagons track relations of the form ±x ± y 6 k,
where k is a constant. Pentagons, a less precise domain than Octagons, combine
the numerical properties tracked by the Interval domain (i.e., x ∈ [n,m]) and
the symbolic ones captured by the Strict Upper Bound domain (i.e., x < y).
Similar to the Strict Upper Bound domain, our framework instantiates domains
that track information of the form x � y, where � is a general partial order over
string variables. Moreover, the framework extension we define to track relations
between string expressions and variables, like x+ y � z, has been modelled sim-
ilarly to Octagons. Other abstractions have been proposed to infer information

4 Available at https://github.com/UniVE-SSV/go-lisa



4 V. Arceri et al.

about the relations between heap-allocated data structures a program manip-
ulates [37]. In [23], an abstract domain that approximates ”must” and ”may”
equalities among pointer expressions has been defined. A relational abstract do-
main for shape analysis has been presented in [24], built on the top of a set of
logical connectives, that represents relations among memory states.

On the string approximation side, a significant effort has been applied to
improve the accuracy of the abstraction. However, contrary to the numerical
world, most of the existing string abstractions only focus on the approximation
of a single variable. Such non-relational abstract domains were already intro-
duced a decade ago [14, 13], such as Character Inclusion, Prefix, and Suffix.
Precisely, they track the characters possibly and certainly contained in a string,
its prefix, and suffix, respectively. The finite-state automata abstract domain [5,
7] is a sophisticated domain that abstracts a string set as the minimum au-
tomaton recognizing it. Even if it can keep information on programs that rely
heavily on string manipulation (such as the ones using eval [7]) it suffers from
scalability problems. M-String [11] is a (non-relational) parametric abstract do-
main for strings in C. In particular, it uses an abstract domain for the content
of a string and an abstract domain for expressions, inferring when a string in-
dex position corresponds to an expression of the considered abstract domain.
Other general-purpose string abstractions [30, 2, 39] or string abstract domains
targeting a specific language [11, 25, 27, 26, 34, 4] have been proposed. The ab-
stract domains we will introduce instead are general-purpose and can be adapted
for analyzing programs written in different programming languages. Note that
our framework can be easily instantiated with other basic string abstract do-
mains leading to even more precise analyses. Precisely, we start by defining a
framework from which domains capturing relations between string variables can
be instantiated, and we proceed by extending it for tracking relations between
string variables and expressions, enhancing the precision of the analysis. As fu-
ture work, it could be interesting to study the similarities between our proposal
and the subterm domain proposed in [22], a weakly relational abstract domain
that infers syntactic equivalences among sub-expressions. For instance, our en-
hanced framework instantiated with the substring order could be seen as the
reduced product [16] between the basic substring domain we propose and the
subterm domain.

Besides the string analysis context, which has the advantage of not relying
on SMT solvers, string abstractions are heavily used, among others, for string
constraint solving. In particular, several works have been proposed on studying
decidable fragments of string constraint formulas [1], and researching effective
procedures to string constraints verification [36, 38, 1, 3, 39]. For example, a re-
cent work [3] approximates strings as a dashed string, namely a sequence of
concatenated blocks that specify the number of times the characters they con-
tain must/may appear.
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3 Background

String Notation. Given an alphabet of symbols Σ, a string is a sequence of zero
or more symbols and it is denoted by σ. The Kleene-closure of Σ, denoted by
Σ∗, is the set of any string of finite length over the alphabet Σ. The empty string
is denoted by ε. Given σ,σ′ ∈ Σ∗, we denote by |σ| the length of σ, by σ · σ′
the concatenation of σ with σ′. Given σ ∈ Σ∗ and i ∈ [0, |σ− 1|], we denote by
σi the symbol at the i-th position of σ. Given σ ∈ Σ∗ and i, j ∈ [0, |σ|], with
i ≤ j < |σ|, we denote by σi . . .σj the substring from i to j of σ, and by σ′ y σ
if σ′ is a substring of σ, i.e., ∃i, j ∈ N. 0 ≤ i ≤ j ≤ |σ − 1|,σi . . .σj = σ′. Note
that y⊆ Σ∗ × Σ∗ is a partial order. Given σ,σ′ ∈ Σ∗ such that σ′ y σ we
denote by idx(σ,σ′) the position of the first occurrence of σ′ in σ.

Order Theory. A pre-order is a reflexive and transitive binary relation, and if it
is also antisymmetric it is called a partial order. A set L with a partial ordering
relation v ⊆ L× L is a poset and it is denoted by 〈L,v〉. A poset 〈L,v,t,u〉,
where t and u are respectively the least upper bound (lub) and greatest lower
bound (glb) operators of L, is a lattice if ∀x, y ∈ L we have that xt y and xu y
belong to L. We say that a lattice is also complete when for each X ⊆ L we have
that

⊔
X,

d
X ∈ L. Any finite lattice is a complete lattice. A complete lattice

L, with ordering v, lub t, glb u, greatest element (top) >, and least element
(bottom) ⊥ is denoted by 〈L,v,t,u,>,⊥〉.

Abstract Interpretation. Abstract interpretation [15, 17] is a theory to soundly
approximate program semantics, focusing on some run-time property of interest.
The concrete and the abstract semantics are defined over two complete lattices,
respectively called the concrete domain C and abstract domain A. Let C and A
be complete lattices, a pair of monotone functions α : C → A and γ : A → C
forms a Galois Connection (GC) between C and A if for every x ∈ C and for
every y ∈ A we have α(x) vA y ⇔ x vC γ(y). We denote a Galois Connection
by (C,α,γ, A). According to Prop. 7 of [18], a GC between two complete lattices
A and C can be induced also if the abstraction function is a complete join pre-
serving map, i.e., α(

⋃
X) =

⊔{α(x) | x ∈ X}, with X ⊆ C. Given (C,α,γ, A),
a concrete function f : C → C is, in general, not computable. Hence, an ab-
stract function f ] : A → A must correctly approximate the concrete function
f . If so, we say that f ] is sound. Formally, given (C,α,γ, A) and a concrete
function f : C → C, an abstract function f ] : A → A is sound w.r.t. f if
∀c ∈ C.α(f(c)) vA f ](α(c)).

4 The Imp Language

In this section, we briefly introduce a very generic imperative language providing
the basic operators on strings, as a reference programming language for the rest
of the paper. We consider the core running language Imp, whose syntax is given
in Fig. 2. Imp is an imperative language handling arithmetic, Boolean, and string
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a ∈ ae ::= x | n | a + a | a - a | a * a | a / a | length(s) | indexOf(s,s)
b ∈ be ::= x | true| false| b && b | b || b | ! b | e < e | e == e

| contains(s1,s2)

s ∈ se ::= x | "σ" | substr(s,a,a) | s1 + s2

e ∈ e ::= a | b | s
st ∈ stmt ::= `1st `2st`3 | `1skip;`2 | `1x = e;`2

| `1if (b) { `2st`3 } else { `4st`5 }`6
| `1while (b) { `2st`3 }`4

P ∈ Imp ::= `1st `2

where x ∈ X (finite set of variables), n ∈ Z and σ ∈ Σ∗

Fig. 2: Imp syntax.

expressions. Its basic values are integers, booleans, and strings, ranging over Z,
{true, false} and Σ∗, respectively. We consider four string operations, length,
indexOf, contains, and substr that respectively compute (i) the length of a
given string, (ii) the index of the first occurrence of a string in another one, (iii)
if a string is contained in another one, and (iv) the substring of a given string
between two specified indexes. Let P be an Imp program. Each Imp statement
is annotated with a label ` ∈ LabP (not belonging to the syntax), where LabP

denotes the set of the P labels, i.e., its program points.

As usual in static analysis, a program can be analyzed by looking at its
control-flow graph (CFG for short), i.e., a directed graph that embeds the control
structure of a program, where nodes are the program points, and edges express
the flow paths from the entry to the exit block. Following [35], given a program
P ∈ Imp, we define the corresponding CFG GP , 〈NodesP,EdgesP, InP,OutP〉 as
the CFG whose nodes are the program points, i.e., NodesP , LabP, InP is the entry
program point, and OutP is the last program point. The algorithm computing the
CFG of a program P is standard and can be found in [35, 6]. An example of CFG is
depicted in Fig. 3. A CFG embeds the control structure of the program. Hence, to
define the behavior of a CFG, it is enough to formalize the semantics of the edge
labels, namely ImpCFG ::= skip | x = e | b, expressing the effect that each edge has
from its entry node to its exit node. Let Val , Z∪Σ∗∪{true, false} be the set
of the possible values associated with a variable. Let m ∈M , X → Val be the
set of (finite) memories, where m∅ = ∅ is the empty memory. The semantics of
expressions is captured by the function L e M : M→ Val. Since the semantics of
integer and Boolean expressions are standard (and not of interest to this paper),
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`1 x = "a"; `2 y = "c";
`3 while (B) {

`4 x = x + "a"; `5

}`6

1

5

4

6

3

2

x = "a"
<latexit sha1_base64="MSMfCk1eW5PDSUimC/vWETakF4s=">AAAB/nicbVDLSgNBEJyNrxhfUY9ehgTBU9iNiF6EgBePEcwDskvonXTikNkHM71iWAJ+hVc9eROv/ooH/8VN3IMm1qmo6qary4+VNGTbn1ZhZXVtfaO4Wdra3tndK+8ftE2UaIEtEalId30wqGSILZKksBtrhMBX2PHHVzO/c4/ayCi8pUmMXgCjUA6lAMok1yVKH/glr0Bl2i9X7Zo9B18mTk6qLEezX/5yB5FIAgxJKDCm59gxeSlokkLhtOQmBmMQYxhhL6MhBGi8dJ55yo8TAxTxGDWXis9F/L2RQmDMJPCzyQDozix6M/E/r5fQ8MJLZRgnhKGYHSKpcH7ICC2zMpAPpEYimCVHLkMuQAMRaslBiExMsnZKWR/O4vfLpF2vOae1+k292jjLmymyI1ZhJ8xh56zBrlmTtZhgMXtiz+zFerRerTfr/We0YOU7h+wPrI9vcVeVQg==</latexit>

y = "c"
<latexit sha1_base64="iDPZ0aVo5PANduept/1pVMcDCfM=">AAAB/nicbVC7SgNBFJ31GeMramkzJAhWYTci2ggBG8sI5gHZJcxObuKQ2dlh5q4QloBfYauVndj6Kxb+i5t1C0081eGce7nnnlBLYdF1P52V1bX1jc3SVnl7Z3dvv3Jw2LFxYji0eSxj0wuZBSkUtFGghJ42wKJQQjecXM/97gMYK2J1h1MNQcTGSowEZ5hJvo+YTukVrfLqbFCpuXU3B10mXkFqpEBrUPnyhzFPIlDIJbO277kag5QZFFzCrOwnFjTjEzaGfkYVi8AGaZ55Rk8SyzCmGgwVkuYi/N5IWWTtNAqzyYjhvV305uJ/Xj/B0WWQCqUTBMXnh1BIyA9ZbkRWBtChMIDI5smBCkU5MwwRjKCM80xMsnbKWR/e4vfLpNOoe2f1xm2j1jwvmimRY1Ilp8QjF6RJbkiLtAknmjyRZ/LiPDqvzpvz/jO64hQ7R+QPnI9vdg+VRQ==</latexit>

B
<latexit sha1_base64="a9OKxPc5LtgkucEsGkyOi9d+feM=">AAAB+HicbVC7TsNAEDzzDOEVoKQ5ESFRRXYQgjKChjJI5CElVrS+bMKR80N3a6Rg5R9ooaJDtPwNBf+CbVxAwlSjmV3t7HiRkoZs+9NaWl5ZXVsvbZQ3t7Z3dit7+20TxlpgS4Qq1F0PDCoZYIskKexGGsH3FHa8yVXmdx5QGxkGtzSN0PVhHMiRFECp1O4TJZezQaVq1+wcfJE4BamyAs1B5as/DEXsY0BCgTE9x47ITUCTFApn5X5sMAIxgTH2UhqAj8ZN8rQzfhwboJBHqLlUPBfx90YCvjFT30snfaA7M+9l4n9eL6bRhZvIIIoJA5EdIqkwP2SElmkNyIdSIxFkyZHLgAvQQIRachAiFeO0l3LahzP//SJp12vOaa1+U682zopmSuyQHbET5rBz1mDXrMlaTLB79sSe2Yv1aL1ab9b7z+iSVewcsD+wPr4BadOTrg==</latexit>

¬B
<latexit sha1_base64="cVWjgy6jOdxJzZ5FczCj6rRRCAE=">AAAB/nicbVC7TsNAEDyHVwivACXNiQSJKrKDEJQRNJRBIg8ptqLzZRNOOZ+tuzVSZEXiK2ihokO0/AoF/4JtXEDCVKOZXe3s+JEUBm370yqtrK6tb5Q3K1vbO7t71f2DrgljzaHDQxnqvs8MSKGggwIl9CMNLPAl9Pzpdeb3HkAbEao7nEXgBWyixFhwhqnk1l0Fk7qLmFzNh9Wa3bBz0GXiFKRGCrSH1S93FPI4AIVcMmMGjh2hlzCNgkuYV9zYQMT4lE1gkFLFAjBekmee05PYMAxpBJoKSXMRfm8kLDBmFvjpZMDw3ix6mfifN4hxfOklQkUxguLZIRQS8kOGa5GWAXQkNCCyLDlQoShnmiGCFpRxnopx2k4l7cNZ/H6ZdJsN56zRvG3WWudFM2VyRI7JKXHIBWmRG9ImHcJJRJ7IM3mxHq1X6816/xktWcXOIfkD6+MbQNiVyA==</latexit>

x = x + "a"
<latexit sha1_base64="wbTaSTI0NIClYMTsrdH2XwfVDuA=">AAACBHicbVDLSgNBEJz1GeNr1aOXIUEQhLAbEb0IAS8eI5gHJCH0TjpxyOyDmd6QsOTqV3jVkzfx6n948F/crDloYp2Kqm66urxISUOO82mtrK6tb2zmtvLbO7t7+/bBYd2EsRZYE6EKddMDg0oGWCNJCpuRRvA9hQ1veDPzGyPURobBPU0i7PgwCGRfCqBU6tp2mygZ82s+5me8AIVp1y46JScDXybunBTZHNWu/dXuhSL2MSChwJiW60TUSUCTFAqn+XZsMAIxhAG2UhqAj6aTZMmn/CQ2QCGPUHOpeCbi740EfGMmvpdO+kAPZtGbif95rZj6V51EBlFMGIjZIZIKs0NGaJlWgrwnNRLBLDlyGXABGohQSw5CpGKcdpRP+3AXv18m9XLJPS+V78rFysW8mRw7ZgV2ylx2ySrsllVZjQk2Yk/smb1Yj9ar9Wa9/4yuWPOdI/YH1sc38LqWfg==</latexit>

Fig. 3: Example of CFG generation.

in the following, we only give the concrete semantics of string expressions.

L x Mm = m(x) L σ Mm = σ L s1 + s2 Mm = L s1 Mm · L s2 Mm
L substr(s, a1, a2) Mm = σi . . .σj

where σ = L s Mm, i = L a1 Mm, j = L a2 Mm, 0 ≤ i ≤ j < |σ|
L length(s) Mm = |L s Mm|

L contains(s1, s2) Mm = L s2 Mmy L s1 Mm

L indexOf(s1, s2) Mm =

{
idx(L s1 Mm, L s2 Mm) if L s2 Mmy L s1 Mm
−1 otherwise

Note that when the indexes of substr are out-of-bounds its semantics is
undefined and the execution stops as usual with standard concrete semantics
in case of runtime errors. We are finally in the position to formalize the edges
label semantics. Abusing the notation, we define the function L st M : M→M to
capture the semantics of the elements of ImpCFG.

L skip Mm = m L x = e Mm = m[x← L e Mm]

L b Mm =

{
m if L b Mm = true

m∅ if L b Mm = false

As far as Boolean expressions are concerned, the semantics propagates the
input memory if the Boolean expression holds, the empty memory otherwise.

Finally, a store is a collection of memories for each program point, defined
as s ∈ S , LabP →M and it associates a memory to each program point.

Static analysis computes invariants for each program point. Thus, we first
define a collecting semantics which relates each program point (i.e., each node
of a CFG) to the set of the possible memories holding at that program point.
This boils down to lifting the concrete semantics L st M : M → M (working on
single memories), to the collecting semantics J st K : ℘(M) → ℘(M) working on
sets of memories. Thus, a collecting store mapping each program point to a set
of memories is s ∈ S , LabP → ℘(M).

Finally, we can apply standard fix-point analysis algorithms [35] which re-
turns a store s such that, for each ` ∈ LabP, s(`) is the fix-point collecting
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semantics (i.e., a set of memories) holding at `. However, the set of the possible
values for each variable, and for each node of a CFG, are not computable because
of Rice’s Theorem. Hence, we need abstractions to make static analysis decid-
able.

5 A Suite of String Relational Abstract Domains

This section provides a suite of relational string abstract domains based on sev-
eral well-known orders over strings. We start by proposing a general framework
to build string relational abstract domains parametrized on a given string order.
Within this framework, we present three different string relational abstract do-
mains: length inequality, character inclusion, and substring domains, with the
corresponding abstract semantics of Imp.

5.1 General Relational Framework

We aim at capturing relations between string variables of the form y � x w.r.t.
a given (partial or pre-order) relation � over strings, such as “the variable y is
a substring of the variable x”. As introduced in Sect. 2, in the numerical world
such a relation is captured by the (strict) upper bound abstract domain [31, 29],
which expresses relations of the form y ≤ x. In this section, we generalize the
upper bound abstract domain to string variables, making it parametric w.r.t. a
given string order.

Our starting point is a (pre or partial) order �Σ∗ ⊆ Σ∗×Σ∗ between strings.
Then, given a Imp program P we aim to analyze, we abuse notation denoting by
Xstr ⊆ X the set of string variables used by the program P. Note that the set of
string variables used by an Imp program is always finite. At this point, we build
a new order � ⊆ Xstr×Xstr between a pair of string variables, built upon �Σ∗ .
Finally, we design a relational string abstract domain based on �.

Definition 1 (General string relational abstract domain). Let � ⊆ Xstr×
Xstr be an order over string variables. The general string relational abstract do-
main A is defined as A , ℘({y � x | x, y ∈ Xstr}) ∪ {⊥A}, where the top
element, denoted by >A, corresponds to the empty set ∅ and the bottom element
is represented by the special element ⊥A. The least upper bound, greatest lower
bound, and the partial order of A are defined as follows5:

A1 tA A2 ,


A1 if A2 = ⊥A
A2 if A1 = ⊥A
Clos({y � x | y � x ∈ A1 ∧ y � x ∈ A2}) otherwise

A1 uA A2 ,

{
⊥A if A1 = ⊥A ∨A2 = ⊥A
{y � x | y � x ∈ A1 ∨ y � x ∈ A2} otherwise

A1 vA A2 ⇐⇒ A1 = ⊥A ∨ (A1 6= ⊥A ∧A2 6= ⊥A ∧A1 ⊇ A2)

5 In general, while � (order on string variables) can be a pre or partial order, vA
(order on the abstract domain A) is always a partial order.
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where Clos : A → A performs the transitive closure of an abstract element A ∈ A,
i.e., ∀x, y, z ∈ Xstr if x � y, y � z ∈ A, then the function Clos returns a new
abstract element containing all the relations of A adding the relation x � z. In
the least upper bound, when one of the elements is bottom, the other is returned,
while in the greatest lower bound, when one of the elements is bottom, then
bottom is returned. Finally, the partial order captures the fact that the bottom
element ⊥A is the least element of A.

The abstract domainA is intended to collect�-must relations, i.e., informally
speaking, if a relation y � x is captured in the abstract world, it means that it
surely holds in the concrete world.

Note that elements of A are sets of relations y � x between string variables.
Moreover, the general abstract domain A is finite, given that the set of string
variables used by the program we aim to analyze is finite and, in turn, also
the number of possible relations. Thus, it is straightforward to prove that the
domain (A,vA,tA,uA,⊥A,>A) is a complete lattice and that its least upper
bound tA and greatest lower bound uA are defined as the intersection and
union between abstract elements, respectively. Abstraction and concretization
functions αA : ℘(M)→ A and γA : A → ℘(M) are defined as follows:

αA(M) ,

{
⊥A if M = ∅
{y � x | ∀m ∈ M. m(y) �Σ∗ m(x), x, y ∈ Xstr} otherwise

(1)

γA(A) ,


∅ if A = ⊥A
℘(M) if A = >A⋂

y�x∈A{m | m(x),m(y) ∈ Σ∗,m(y) �Σ∗ m(x)} otherwise

(2)

where we recall that �Σ∗ denotes an order over Σ∗. The abstraction function
takes as input a set of memories M and returns the least set of relations that
holds in any memory m ∈ M. Instead, the concretization function takes as input
an element A of the general string relational abstract domain A and returns the
empty set if A = ⊥A, the set of any possible concrete memory if A = >A, and
the least set of concrete memories where all the relations contained in A holds,
otherwise. (℘(M),αA,γA,A) is a Galois Connection, since ℘(M) and ⊥A are
complete lattices and αA is a join-morphism.

Running Example: Length Relational Abstract Domain. For instance, one may
be interested in capturing the relations concerning the length of a string vari-
able w.r.t. another, when they interact during the program execution. Formally,
we are interested in identifying the relation �len⊆ Xstr × Xstr between string
variables such that, given x, y ∈ Xstr, y �len x iff the length of y is smaller than
or equal to the length of x. Note that �len is a partial order, but the string order
upon which is based is a pre-order. Indeed, two strings may have the same length,
but may not represent the same sequence of characters (the anti-symmetric prop-
erty does not hold). For this reason, when we have that x �len y and y �len x,
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we can assert that x and y have the same length but we cannot assert that the
strings tracked by the variables are equal.

We instantiate the general abstract domain of Def. 1 over the pre-order �len.
In particular, we replace the general string order � with �len, obtaining the
relational string length abstract domain Len , ℘({y �len x | x, y ∈ Xstr}) ∪
{⊥len}, where the top element, denoted by >len, is the empty set ∅, and ⊥len

is a special element denoting the bottom element. The least upper bound and
greatest lower bound operators tlen and ulen and the partial order vlen (over
Len) can be obtained by replacing any occurrence of � with �len in their general
definition in Def. 1.

Lemma 1. (Len,vlen,tlen,ulen,⊥len,>len) is a complete lattice.

We define the abstraction αlen : ℘(M) → Len and the concretization γlen :
Len → ℘(M) functions of the relational string length abstract domain instanti-
ating Eq. 1 and 2 replacing �Σ∗ with �len.

αlen(M) ,

{
⊥len if M = ∅
{y �len x | ∀m ∈ M. |m(y)| ≤ |m(x)|, x, y ∈ Xstr} otherwise

γlen(L) ,


∅ if L = ⊥len

℘(M) if L = >len⋂
y�lenx∈L{m | m(x),m(y) ∈ Σ∗, |m(y)| ≤ |m(x)|} otherwise

Theorem 1. (℘(M),αlen,γlen, Len) is a Galois Connection.

Proof. The Galois Connection’s existence comes from the fact that both ℘(M)
and Len are complete lattices, and αlen is a join-morphism (Prop. 7 of [18]).

At this point, we define a general and parametric abstract semantics of Imp.
In particular, given an abstract domain A, built upon the order � as shown
in Def. 1, we define the function J st KA : A → A, capturing the �-relations
between string variables generated by the statement st. We start by defining
the parametric abstract semantics of the assignment x = s. Here, the crucial
point is the definition of the auxiliary function extr : se → ℘(Xstr) that, given
a string expression s, extracts all the variables syntactically appearing in s that
are related w.r.t. � with s, i.e., it approximates the set of variables that are
�-related with s.

Extraction Function of Len. Given x = s, we can see the string expression
s as an ordered list of concatenated expressions s0, s1, . . . , sn, and the string
variables that surely have length less than or equal of x are the ones at the top-
level of a concatenation appearing in s. For instance, consider the assignment
x = y + z + w. The relations we aim to capture from it are y �len x, z �len x and
w �len x, that is y, z, w have length less than or equal to the length of x. These
variables are collected by the function extr : se → ℘(Xstr), which extracts the
variables that syntactically appears at the top-level of a string expression.
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extr(s) =


{y} if s = y ∈ Xstr

extr(s1) ∪ extr(s2) if s = s1 + s2

∅ otherwise

Once defined the extraction function extr, we semantically interpret the syn-
tactic components it extracts giving the general abstract semantics of the as-
signment J x = s KAA, which is defined by the steps shown below. For the sake
of simplicity, we suppose that the input abstract memory A is not ⊥A: in this
case, ⊥A is simply propagated, skipping the above phases.

– [remove]: Ar =

{
Ar {w � z | w = x, z ∈ Xstr} if x ∈ extr(s)

Ar {w � z | w = x ∨ z = x} otherwise

– [add]: Aa = Ar ∪ {y � x | y ∈ extr(s)}
– [closure]: J x = s KAA = Clos(Aa)

The first phase is [remove]: given the input memory A ∈ A, it removes the
relations that surely do not hold anymore after the assignment execution. In
particular, we always remove the relations of the form x � z, for some z ∈ Xstr,
since x is going to be overwritten. Still, we also remove any relations of the
form w � x, for some w ∈ Xstr, iff x does not appear at the top-level of the
expression s. For instance, consider the fragment x = w; x = x + y; and the
relational abstract domain Len. From the first assignment, we collect the relation
w �len x. This information also holds after the second assignment’s execution,
since x appears at the top-level of the assignment expression and inherits any
previously gathered �len-relation. Hence, in this case, we do not remove the
previously gathered relations about the variable x. In the other cases, also the
previous length relations of the form w �len x are removed.

Then, [add] adds the �-relations y � x, for each variable y collected in
extr(s), and [closure] performs the transitive closure on the abstract memory
obtained from [add], i.e., Aa, by means of the function Clos, to derive the implicit
�-relations not yet present in Aa.

As far as conditional expressions are concerned, the only Imp Boolean expres-
sions that generate �-relations for the string domains presented in this paper
are contains(s1, s2), s1 == s2, conjunctive and disjunctive expressions. Note
that, given the expression contains(s1, s2), we infer �-relations only when s1
is a variable, otherwise no other information is gathered. As in the assignment
abstract semantics, we suppose that the input abstract memory A is not equal
to ⊥A, since in this case the bottom element is simply propagated.

J contains(x, s) KAA = Clos(A ∪ {y � x | y ∈ extr(s)})
Similarly, we can infer �-relations in the abstract semantics of s1 == s2 only

when either s1 or s2 is a string variable.

J x == s KAA = J s == x KAA =

Clos(A ∪ {y � x, x � y}) if s = y ∈ Xstr

Clos(A ∪ {y � x | y ∈ extr(s)}) otherwise
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As far as the semantics of the conjunctive and disjunctive expressions are
concerned, we rely on the least upper bound and greatest lower bound operators
given in Def. 1.

J e1 && e2 KAA = A ∪ (J e1 KAA tA J e2 KAA)

J e1 || e2 KAA = A ∪ (J e1 KAA uA J e2 KAA)

Unlike the assignment, Boolean expressions’ abstract semantics do not re-
move previous substring relations since they do not alter the (concrete) memory.
For the other Boolean expressions, the abstract semantics is the identity, namely
J b KAA = A.

Abstract Semantics of Len. The abstract semantics for Len is captured by the
function J st Klen : Len → Len, that given an input abstract memory returns
an abstract memory containing the new string length relations introduced by
st, and it is defined by replacing any occurrence of � with �len, in the general
abstract semantics definition reported above.

Theorem 2. The abstract semantics of Len is sound. Indeed, it holds that:

∀M ∈ ℘(M). αlen(J x = s KM) vlen (J x = s Klenαlen(M))

∀M ∈ ℘(M). αlen(J b KM) vlen (J b Klenαlen(M))

Note that this general abstract semantics holds for the abstract domains in-
stantiated and presented in this paper and other abstract domains, derived from
other string orders, may define the abstract semantics also for other program
constructs that are not considered here. For example, consider the indexOf op-
eration. Its abstract semantics over Len does not generate new relations, while
this may happen if other relational abstract domains are considered. Also, the
extr function may differ from the one presented before if other string relations
are considered: for instance, the extr function for the abstract domain based on
the prefix relation is slightly different from the one used in Len: given extr(s), it
would extract just the string expressions that are prefixes of the s and not any
substring.

5.2 Character Inclusion Relational Abstract Domain

Within the formal framework presented above, we are able to generate several
relational string abstract domains. In the following, we present the character
inclusion relational abstract domain Char, tracking the characters included be-
tween a pair of string variables. Given x, y ∈ Xstr, we are interested in capturing
“if all the characters which appear in y occur in x”. Formally, we introduce the
binary relation �char ⊆ Xstr ×Xstr such that y �char x iff the set of characters
of y is contained or equal to the set of characters of x. Similar to �len in the Len
abstract domain, also �char is a partial order, based on the character inclusion
pre-order between string values. Hence, if we have that x �char y and y �char x
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we can assert that x and y have the same characters but it is not guaranteed
that they track the same string value.

We define the relational character inclusion string abstract domain Char ,
℘({y �char x | x, y ∈ Xstr}) ∪ {⊥char}. The top element is the empty set ∅, and
the bottom element is represented by the special element ⊥char.

5.3 Substring Relational Abstract Domain

The abstract domains Len and Char presented in the previous sections track
relations about the lengths and the characters of a pair of string variables. The
main limitation of these domains is that they are both based on strings pre-
orders: hence, as we have already argued before, when we have the relations
x � y and y � x, we cannot assert that the values tracked by the variables x and
y are equal. Moreover, Len loses any information about the content of a variable,
and Char loses any information about the shape of a variable. We propose then a
strictly more precise partial order-based relational string abstract domain, still
fitting in the formal framework presented in Sect. 5.1 and solving the problems
of Len and Char mentioned before.

Given x, y ∈ Xstr, let the binary relation �sub: Xstr × Xstr be such that
x �sub y iff x is a substring of y. The relation �sub is a partial order, being
reflexive, transitive and anti-symmetric, as well as the substring relation on
which �sub is based on. Unlike the Len and Char cases, if we havex �sub y and
y �sub x, we can surely assert that the strings tracked by x and y are equal.

At this point, we define the relational string abstract domain Sub , ℘({y �sub

x | x, y ∈ Xstr}) ∪ {⊥sub}, where the top element is the empty set ∅, and ⊥sub

is a special element representing the bottom element.

5.4 Extension to String Expressions

The abstract domain proposed in Sect. 5.3 can track when a single string variable
is a substring of another one. In this section, we show how to improve Sub to
catch even more substring relations. In order to highlight the limits of Sub (which
Len and Char also suffer from), consider the following fragment: x = y + y +

w; z = y + w;. If we analyze it with the substring abstract domain, the final
abstract memory is {y �sub x,w �sub x, y �sub z, w �sub z}. Still, other substring
relations may be inferred, such as z �sub x or y + w �sub x. In the following, we
slightly change the substring abstract domain to catch also such relations.

Given an Imp program P we aim to analyze, we recall that Xstr denotes the
finite set of string variables used by P. Similarly, we abuse notation denoting
by se the set of string expressions appearing in P. As Xstr, also the set of
string expressions appearing in P is finite. At this point, we introduce the binary
relation �sub?⊆ se×Xstr that relates string expressions with string variables. For
instance, y + y �sub? x means that the concatenation of y with y is a substring
of x. Upon �sub? , we build the new set of abstract memories able to relate string
expressions to variables. In particular, we define the abstract domain

Sub? , ℘({s �sub? x | s ∈ se, x ∈ Xstr}) ∪ {⊥sub?}
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Lub: S?
1 tsub? S?

2 ,


S?
2 if S?

1 = ⊥sub?

S?
1 if S?

2 = ⊥sub?

Clos({s �sub? x | s �sub? x ∈ S?
1 ∧ s �sub? x ∈ S?

2}) otherwise

Glb: S?
1 usub? S?

2 ,


⊥sub? if S?

1 = ⊥sub?

∨S?
2 = ⊥sub?

{s �sub? x | s �sub? x ∈ S?
1 ∨ s �sub? x ∈ S?

2} otherwise

Partial order: S?
1 vsub? S?

2 ⇐⇒ S?
1 = ⊥sub? ∨ (S?

1 6= ⊥sub? ∧ S?
2 6= ⊥sub? ∧ S?

1 ⊇ S?
2 )

Fig. 4: Lattice operations over Sub?.

where the top element is the empty set ∅, and ⊥sub? is a special element present-
ing the bottom element. We denote by S? an element of Sub?. Note that Sub?

is still a finite domain, since, given a program P ∈ Imp, both the string vari-
ables and string expressions used by P are finite. Similarly to the previous cases,
(Sub?,vsub? ,tsub? ,usub? ,⊥sub? ,>sub?) is a complete lattice, and the definition
of its lattice operators and partial order is reported in Fig. 4. The abstraction
αsub? : ℘(M)→ Sub? and concretization γsub? : Sub? → ℘(M) functions, forming
again a Galois Connection, are defined as:

αsub?(M) ,

{
⊥sub? if M = ∅
{s �sub? x | ∀m ∈ M. J s Kmy m(x), x ∈ Xstr, s ∈ se} otherwise

γsub?(S?) ,


∅ if S? = ⊥sub?

℘(M) if S? = >sub?⋂
s�sub?x∈S?{m | J s Km,m(x) ∈ Σ∗, J s Kmy m(x)} otherwise

We define the abstract semantics of Sub?. Let extr? : se→ ℘(se) extend the
function extr introduced in Sect. 5.1, extracting from a string expression s all
the sub-expressions that syntactically appear at the top-level of s. For instance,
extr?(y + w + "ab") = {y, w,w + “ab”, y + w, y + w + “ab”, “a”, “b”, “ab”}.
Note that, for some s ∈ se, we have that s ∈ extr?(s). The abstract semantics
of the assignment J x = s Ksub

?S? is defined by the following steps. As before,
we suppose that S? is not the bottom element, since in this case the bottom
element is simply propagated skipping the above phases.

– [remove]: S?r =

{
S? r {s′ �sub? z | x appears in s′, z ∈ Xstr} if x ∈ extr?(s)

S? r {s′ �sub? z | z = x ∨ x appears in s′} otherwise

– [add]: S?a = S?r ∪ {s′ �sub? x | s′ ∈ extr?(s)}
– [inter-asg]: S?i = S?a ∪ {x �sub? y | ∀s′ �sub? x ∈ S?a ∃s′ �sub? y ∈ S?a}
– [closure]: J x = s Ksub

?S? = Clos(S?i )

The [remove], [add] and [closure] phases are similar to those of the def-
inition of J · KA. The intermediate phase [inter-asg] instead differs from the
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1 x = "ab";
2 y = "a";
3 z = "b";
4 w = y + z;

Fig. 5: Imp example.

previous definitions and works as follows: if from the previous steps, any sub-
string of x is also a substring of a string variable y, as checked in the [inter-asg]
phase, we can safely assert that x is a substring of y and we can add that relation
to S?a . It is worth noting that we can safely add the substring relation x �sub? y,
for some y ∈ Xstr, just because we are performing an assignment x = s. Indeed,
we are overwriting the variable x with the assignment and in the [add] phase we
surely add the relation s �sub? x; hence, if we found that any gathered substring
relation concerning x (included s �sub? x) is tracked also for y, we can safely say
that x �sub? y. The abstract semantics of Boolean expressions is straightforward.

Similarly, we can also extend the abstract domains Len and Char to make
them able to track relations between expressions and string variables, obtaining
Len? and Char?.

Capturing Other Implicit Substring Relations. In the previous section, we have
presented the substring domain Sub? tracking the string expressions that are
definitely substrings of a variable. As discussed in Sect. 1.1, we may lose any
information about the tracked string value, leading to the loss of some implicit
substring relations. Let us show the problem on Sub? considering the Imp frag-
ment reported in Fig. 5. If we analyze the Imp fragment with Sub?, the sub-
string relations concerning the variable w are: y �sub? w, z �sub? w, y + z �sub?

w, “a” �sub? w, “b” �sub? w. Note that, Sub? cannot track that the variables y

and z are exactly the strings “a” and “b”, respectively, and in turn it is not able
to infer that x is a substring of w and viceversa, that is the variables x and w

have the same string value.

In order to cope with this problem and to be able to track also these implicit
relations, as discussed in Sect. 1.1, we rely on the reduced product combination of
Sub? with a non-relational domain. In particular, we rely on the string constant
propagation analysis, which tracks for each variable its constant value.6 We
model the constant propagation as a map, denoted by CS, associating each
string variable with the corresponding constant string value and if a variable is
not mapped by the analysis it means that it is not constant. For instance, if we
consider the fragment reported in Fig. 5, the constant propagation analysis, at
line 4, returns the following map: {x 7→ “ab”, y 7→ “b”, z 7→ “b”, w 7→ “ab”}.
At this point, the idea is to exploit the constant propagation analysis adding
a new phase, that we call [propagate], at the end of the assignment abstract
semantics J x = s Ksub

?S? presented before. Let us denote by S?c the abstract
memory returned by the [closure] phase presented in the previous section and by

6 Full details about how the constant propagation analysis works are reported in [33].
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CS the constant propagation analysis holding at the assignment program point.

[propagate] :

J x = s Ksub
?S? = S?c ∪ {x �sub? y, y �sub? x | ∃y ∈ Xstr. CS(x) = CS(y)}

Before returning the assignment result, the [propagate] phase checks if there
exists a variable y ∈ Xstr such that y has the same constant value of the assigned
variable x. If so, the substring relations x �sub? y and y �sub? x are added to the
result. In this way, if we analyze again the fragment reported in Fig. 5, we exploit
the constant propagation analysis in order to infer, at line 4, that x �sub? w and
w �sub? x, and in turn, we can state that the two variables are equal.

6 Experimental Results

RSub is a prototype intraprocedural static analyzer for the Go language im-
plementing the Sub? relational abstract domain, available at https://github.

com/UniVE-SSV/go-lisa. Indeed, from a precision point of view, Sub? subsumes
the others string relational abstract domains presented in this paper. RSub is
built as an extension of LiSA [21] (https://github.com/UniVE-SSV/lisa), a
library for the development and the implementation of abstract interpretation-
based static analyzers. We tested RSub over several representative string case
studies, taken from real-world software and hand-crafted. In the following, we
use two of these fragments to show the limits and strengths of Sub?.

The rest of the section is structured as follows: in Sect. 6.1 we compare
our analysis with prefix Pr, suffix Su, char inclusion Ci and bricks Br ab-
stract domains [14], and with Tarsis [32]. Tarsis is a non-relational finite state
automata-based abstract domain that abstracts string values into regular expres-
sions. In Sect. 6.2 we show how to improve the precision of Tarsis by combining
it with Sub?. Finally, we evaluate the performance of Sub? through an experi-
mental comparison between Tarsis and its combination with Sub?, measuring
the overhead added by Sub?.

6.1 Case Studies

We consider two code fragments manipulating strings (cf. Fig. 6), ncon and
rep (slight modification of the programs in Chap. 5 of [10] and [32], respectively).
ncon overrides the variable x either with x + "c" or y + "c", depending on
whether the equality between x and y is satisfied or not. rep iteratively appends a
string read from the user input and stored in v concatenated with the string "\n"
to variable r. The value of the Boolean guards of both programs are supposed
to be statically unknown, as well as the value of v in rep.

Let us consider the program ncon. Tab. 1 illustrates the results of the anal-
ysis at the end of programs ncon where the second column reports the abstract
value of x at the end of each analysis, and third and forth columns are X if the
corresponding analysis proves that the assert conditions at lines 7-8 of ncon
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1 if x == y {
2 x = x + "c"
3 } else {
4 x = y + "c"
5 }
6

7 assert (Contains(x, "c"))
8 assert (Contains(x, y))

(a) Program ncon

1 v = readStr ()
2 r = "Elem: \n" + v + "\n"
3

4 for ? {
5 v = readStr ()
6 r = r + v + "\n"
7 }
8

9 assert (Contains(r, "em"));
10 assert (Contains(r, v));

(b) Program rep

Fig. 6: Program samples used for domain comparison.

Domain x abstract value Assert 7 Assert 8

Pr ε (unknown) 7 7

Su c X 7

Ci {c}, {Σ} X 7

Br {?}(0,+∞) (unknown) 7 7

Tarsis {?}c X 7

RSub c �sub? x, y �sub? x X X

Table 1: Analysis results for ncon (where the symbol ? denotes ”any string”).

hold, or 7 otherwise. The analyses based on Pr and Br do not precisely verify all
the assertions since they abstract x with their corresponding top value. Instead,
Ci, Su, and Tarsis verify the assertion at line 7 but not the one at line 8, since
they cannot track any relation between the variables x and y. Finally, RSub
verifies all the assertions since it tracks that both string ”c” and the variable y

are substrings of x.

Consider now rep, which involves a fix-point computation. The analysis re-
sults at the end of the program rep are reported in Tab. 2, where the second
column reports the abstract value of r at the end of each analysis, and third and
forth columns are X if the corresponding analysis proves that the assert con-
ditions at lines 9-10 of rep hold, or 7 otherwise. We must verify two assertions
for this program, those at lines 9-10, that certainly hold. Note that the value
(unknown) in Tab. 2 means that the corresponding analysis has returned the top
abstract value. Pr can verify the assertion at line 9 but not the ones at line 10,
since it loses any information on the rest of the string, except for the common
prefix, and it does not track the fact that variable v is undoubtedly contained in
r. Su, Ci, and Br analyses lose any information about the value of r, abstracting
it with their corresponding top value. So, these analyses are unable to verify the
assertions at lines 9-10. Tarsis abstracts the value of r as the regular expression
reported in Tab. 2, correctly verifying the assertion at line 9 but not the one
at line 10, being unable to track the relationship between the variables r and
v. Instead, RSub behaves as Tarsis as far as assertion at line 9 is concerned,
since the string Elem: is definitely a substring of r. Moreover, RSub verifies
the assertion at line 10, since it tracks that the variable v, independently from
its abstract value, is a substring of the variable r.
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Domain r abstract value Assert 9 Assert 10

Pr Elem: X 7

Su ε (unknown) 7 7

Ci {Σ}, {Σ} (unknown) 7 7

Br {?}(0,+∞) (unknown) 7 7

Tarsis Elem: ?\n(?\n)∗ X 7

RSub
Elem : �sub? r, v �sub? r, r + v + \n �sub? r

v + \n �sub? r, \n �sub? r
X X

Table 2: Analysis results for rep (where the symbol ? denotes ”any string”).

//https :// golang.org/src/strings
/strings.go

func Count(s, src string) int {
if len(src) == 0 {

return len(s) + 1
}
n := 0
for true {

i := strings.Index(s, src)
if i == -1 {

return n
}
n++
s = s[i+len(src):]

}
}

import "strings"

func Write(text , pt string) {
if Contains(text , pt) {

c := Count(text , pt)
SetResult("result", c) •

}
}

Fig. 7: Golang program example.

6.2 Improving Precision of Non-relational Abstract Domains

We evaluated the abstract domain Sub? as a standalone abstraction, w.r.t. to
some state-of-art string abstractions, showing that more relations can be cap-
tured. As discussed in Sect. 1.1, Sub? may lose information about the content of
string variables and its reduced product combination with a non-relational string
abstract domain can be investigated in order to cope with this problem. Note
that, the benefits of the combination of Sub? with a non-relational string ab-
stract domain can be already seen with the code fragment reported in Sect. 6.1:
reduced product combination between Pr and Sub? correctly verifies all the
assertions contained in ncon and rep.

In this section, we show and discuss how to improve the precision of Tarsis [32]
by combining it with Sub?. In particular, we show that the abstract semantics
of Tarsis can be refined, in terms of precision, when combined with Sub?. We
denote by Tarsis+ the Cartesian product between Tarsis and Sub?, a new
string abstract domain tracking both the regular expressions approximating the
strings values of each program variable (the non-relational information tracked
by Tarsis) and the set of substring relations (the relational information tracked
by Sub?) holding at each program point. As far as integers are concerned, we
abstract them with the interval abstract domain [15]. Let us consider the Write

function reported in Fig. 7 that uses two string operations, i.e., Contains and
Count, whose source code is reported on the left of Fig. 7. In particular, the
Write function computes the number of occurrences of pt in text after checking
the containment of pt in text.
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We aim to infer the integer abstract value of c at the hotspot labeled with •.
Note that the function parameters’ values are statically unknown; for this reason,
Tarsis approximates the values of c as the interval [0,+∞], introducing noise to
the resulting interval. Indeed, the spurious value 0 corresponds to have no occur-
rences of pt in text, even if the program checks the condition Contains(text,

pt). This happens because Tarsis, when reaching the hotspot •, cannot track
that pt is surely contained in text, causing the consequent loss of precision.
Then, we analyzed Write with Tarsis+. When the program point • is reached,
Tarsis+ captures that pt is a substring of text, capturing the substring relation
pt �sub? text, since to reach the hotspot, the Boolean guard Contains(text,

pt) must be traversed. Hence, the Tarsis analysis for the function Count can
be improved, refining the interval resulting from Tarsis semantics, i.e., [0,+∞],
with [1,+∞], since at least one occurrence of pt can be found in text. Note that
the interval resulting from the Tarsis+ analysis is the best possible interval ab-
straction that we can obtain (in this sense, the analysis is complete for the above
function [8]). Similarly, also the Tarsis abstract semantics of other string oper-
ations can be refined. For instance, let us consider two string variables x and y
and suppose that x �sub? y. Given Index(x, y), Tarsis would return the inter-
val [−1,maxLen(x) + 1],7 having no information about x and y. Instead, having
the information x �sub? y, Tarsis+ can refine the aforementioned interval in
[0,maxLen(x) + 1]. Another example is the case of Replace(x, y, z): having
the information about the containment of y in x, tracked by Sub?, would lead
to a must-replacement, that returns the input automaton where any occurrence
of y is replaced with z, rather than a may-replacement, that returns the lub
between the input automaton and the input automaton where any occurrence
of y is replaced with z. [32].

6.3 Scalability of Sub?

We conclude the experimental evaluation by discussing the performance of Sub?.
As also discussed in [29], the upper bounds domain of the domains presented
in this paper offers an efficient implementation since it can be represented as a
multi-valued map. For instance, the substring relations set {y �sub? x, z �sub?

x,w �sub? x} can be represented as the map x 7→ {y, z, w}. To assert the scal-
ability of Sub?, we crawled from GitHub the Go repositories dealing with the
strings package, namely the Go package implementing popular functions ma-
nipulating strings (https://golang.org/pkg/strings/). From these reposito-
ries, we have selected the top best matched repositories (according to GitHub
API), we have filtered only the Go program files, and we have selected the repos-
itories with at least 10 Go programs. Finally, we ran our Go static analyzer with
the so obtained programs both using Tarsis and Tarsis+, recalling that the
latter corresponds to the combination between Tarsis and Sub?. At this point,
we computed the overhead added by Sub? in Tarsis+ w.r.t. Tarsis.

7 maxLen(x) returns the maximum length of the string recognized by the automaton
abstracting x if it is finite, +∞ otherwise.
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Repository Go files Analyzed LOCs Tarsist(s) Tarsis
+
t(s) Overhead

dnnrly/abbreviate 14 10 1837 25.77 26.93 1.93%
reiver/go-stringcase 25 17 541 46.16 48.33 4.48%

gookit/goutil 55 29 1256 110.68 113.34 2.34%
schigh/str 12 5 126 19.70 20.58 4.27%

ozgio/strutil 22 11 218 39.01 41.91 6.91%
andy-zhangtao/gogather 26 12 531 48.80 51.51 5.26%

woanware/lookuper 173 41 5436 420.16 427.13 1.63%
RamenSea/StringCheese 24 11 833 50.41 52.03 3.11%
bcampbell/fuzzytime 10 6 745 19.05 20.03 4.89%

Total 360 142 11523 779.74 801.79 2.75%

Table 3: Tarsis and Tarsis+ performance results. From left to right: the GitHub
repository name, the number of Go programs contained, the number of Go pro-
grams that the static analyzer has analyzed, the total number of lines of code
analyzed, Tarsis and Tarsis+ execution times in seconds, and the overhead.

Tab. 3 summarizes the performance results for Tarsis and Tarsis+ for each
repository. The difference between the number of Go analyzed programs and the
total number of Go programs is due to Go features that are not currently sup-
ported by our static analyzer (e.g., channels, high-order functions, Go routines)
and not due to analysis weaknesses. As stated by Tab. 3, the addition of Sub?

to Tarsis does not considerably affect its analysis execution time, adding an
overhead no greater than the 7% for each repository. The overall results confirm
this, since the total overhead is below 3%, and almost 7% in the worst case.

7 Conclusion

In this paper, we introduced a general framework to generate new relational ab-
stract domains starting from orders on string values. In particular, we introduced
a new relational substring domain, Sub?, showing its impact on the accuracy of
the analysis with respect to state-of-the-art string abstractions, even when used
as a standalone abstract domain. We have shown how to improve the precision
of Tarsis, a finite-state automata-based string abstract domain, by combining
it with Sub?. Finally, we have provided experimental evidence that the addition
of Sub? to Tarsis does not considerably affect the Tarsis performances.

As future works, we aim to formally investigate the precision increment
gained by Tarsis+ w.r.t. Tarsis, measuring the distance [28] between their re-
sults. Furthermore, we aim to investigate the completeness property of Tarsis+

by applying the techniques in [8]. Finally, we aim to combine the relational
abstract domains proposed in this paper with sophisticated state-of-the-art ab-
stractions, e.g., the M-String abstract domain [11].
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